Publications by authors named "Geng-Lin Li"

The global surge in the population of people 60 years and older, including that in China, challenges healthcare systems with rising age-related diseases. To address this demographic change, the Aging Biomarker Consortium (ABC) has launched the X-Age Project to develop a comprehensive aging evaluation system tailored to the Chinese population. Our goal is to identify robust biomarkers and construct composite aging clocks that capture biological age, defined as an individual's physiological and molecular state, across diverse Chinese cohorts.

View Article and Find Full Text PDF

The mammalian cochlea relies on outer and inner hair cells (OHCs/IHCs) for sound amplification and signal transmission. Rab3-interacting molecular binding protein 2 (RIMBP2), expressed in receptor cells and neurons at synaptic active zones, remains poorly characterized in hearing. We therefore generated a Rimbp2 knockout (KO) mouse model (Rimbp2), which exhibited severe hearing loss with elevated thresholds, prolonged latencies, and reduced amplitudes in auditory brainstem response Wave I.

View Article and Find Full Text PDF

Otitis media is an infection of the middle ear mainly caused by bacteria, and current treatments rely heavily on antibiotics. However, the emergence of antibiotic-resistant bacterial strains seriously affects their efficacy. In our study, we found that extracellular vesicles (EVs) derived from human natural killer cells (NKs) inhibit the proliferation of both standard and levofloxacin (LVX)-resistant strains of Staphylococcus aureus in a dose-dependent manner.

View Article and Find Full Text PDF

Hearing is one of the most vital sensory functions in human beings and a crucial means of perceiving and acquiring information from the natural environment. The advancement of human society is closely linked to the development of language, with hearing serving as the foundation for verbal communication. As individuals age, the deterioration of the auditory system becomes a significant factor contributing to sensory impairments in the elderly.

View Article and Find Full Text PDF

Pathogenic mutations in the Gjb2 gene, encoding connexin 26, are the leading cause of autosomal recessive hereditary deafness. Gene therapy holds significant promise for treating this. Adeno-associated virus (AAV)-mediated therapeutic gene delivery has been shown to be safe and effective in restoring hearing in both animal models and human patients.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on the role of TBC1D24 in cochlear inner hair cells and how its mutation (p.S178L) leads to hearing loss.
  • Researchers created a knockout mouse model to observe the effects of this mutation, which resulted in mild hearing loss and issues with auditory signals.
  • Findings indicate that TBC1D24 is crucial for proper vesicle recycling in hair cell synapses, as the mutation causes accumulation of endosome-like structures and reduced exocytosis in inner hair cells.
View Article and Find Full Text PDF
Article Synopsis
  • A specific mutation in the OTOF gene is linked to severe hearing loss, which is studied using mutant mice that mimic this condition.
  • Researchers used a base editor technique to correct the mutation in the inner ear of these mice, leading to significant restoration of hearing and otoferlin protein levels.
  • The findings suggest that base editing could be a promising approach for treating hereditary deafness in humans.
View Article and Find Full Text PDF

Afferent synapses between inner hair cells (IHCs) and the type I spiral ganglion neurons (SGNs) in the cochlea provide over 95% of sensory signals for auditory perception in the brain. However, these afferent synapses are particularly vulnerable to damage, for example from excitotoxicity, and exposure to noise in the environment which often leads to noise-induced cochlear synaptopathy (NICS). In this study, we simulated excitotoxic trauma by incubating kainic acid, a non-desensitizing agonist for AMPA type glutamate receptors on cultured cochleae.

View Article and Find Full Text PDF

Danshensu, also known as salvianic acid A, is a primary active compound extracted from a traditional Chinese herb Danshen (Salvia miltiorrhiza). While its antioxidative and neuroprotective effects are well-documented, the underlying mechanisms are poorly understood. In this study, we sought out to investigate if and how Danshensu modulates neuronal excitability and voltage-gated ionic currents in the central nervous system.

View Article and Find Full Text PDF

Adeno-associated virus (AAV)-mediated gene therapy is widely applied to treat numerous hereditary diseases in animal models and humans. The specific expression of AAV-delivered transgenes driven by cell type-specific promoters should further increase the safety of gene therapy. However, current methods for screening cell type-specific promoters are labor-intensive and time-consuming.

View Article and Find Full Text PDF

Adeno-associated viral (AAV) vectors are increasingly used as vehicles for gene delivery to treat hearing loss. However, lack of specificity of the transgene expression may lead to overexpression of the transgene in nontarget tissues. In this study, we evaluated the expression efficiency and specificity of transgene delivered by AAV-PHP.

View Article and Find Full Text PDF

Aminoglycoside antibiotics (AGAs) are widely used in life-threatening infections, but they accumulate in cochlear hair cells (HCs) and result in hearing loss. Increases in adenosine triphosphate (ATP) concentrations and P2X7 receptor expression were observed after neomycin treatment. Here, we demonstrated that P2X7 receptor, which is a non-selective cation channel that is activated by high ATP concentrations, may participate in the process through which AGAs enter hair cells.

View Article and Find Full Text PDF

Hearing loss is one of the most common neurosensory disorders in humans, and above half of hearing loss is caused by gene mutations. Among more than 100 genes that cause non-syndromic hearing loss, myosin VI (MYO6) is typical in terms of the complexity of underlying mechanisms, which are not well understood. In this study, we used both knock-out (Myo6) and point mutation (Myo6) mice as animal models, performed whole-cell patch-clamp recording and capacitance measurement in the inner hair cells (IHCs) in the cochlea, and sought to reveal potential functional and developmental changes in their ribbon synapses.

View Article and Find Full Text PDF

Pendrin (SLC26A4) is an anion exchanger expressed in the apical membranes of selected epithelia. Pendrin ablation causes Pendred syndrome, a genetic disorder associated with sensorineural hearing loss, hypothyroid goiter, and reduced blood pressure. However its molecular structure has remained unknown, limiting our understanding of the structural basis of transport.

View Article and Find Full Text PDF

Hearing organs in the peripheral of different vertebrate species are extremely diverse in shape and function. In particular, while the basilar papilla (BP) is elongated and covers the sounds of both low and high frequencies in turtles and birds, it is round and responds to high frequencies only in frogs, leaving the low frequencies to the amphibian papilla (AP). In this study, we performed patch-clamp recordings in hair cells of both hearing organs in bullfrogs and conducted a comparative study of their ionic currents and exocytosis.

View Article and Find Full Text PDF

Functional cochlear hair cells (HCs) innervated by spiral ganglion neurons (SGNs) are essential for hearing, whereas robust models that recapitulate the peripheral auditory circuity are still lacking. Here, we developed cochlear organoids with functional peripheral auditory circuity in a staging three-dimensional (3D) co-culture system by initially reprogramming cochlear progenitor cells (CPCs) with increased proliferative potency that could be long-term expanded, then stepwise inducing the differentiation of cochlear HCs, as well as the outgrowth of neurites from SGNs. The function of HCs and synapses within organoids was confirmed by a series of morphological and electrophysiological evaluations.

View Article and Find Full Text PDF

Background: The ideal neural interface or scaffold for stem cell therapy shall have good biocompatibility promoting survival, maturation and integration of neural stem cells (NSCs) in targeted brain regions. The unique electrical, hydrophilic and surface-modifiable properties of TiCT MXene make it an attractive substrate, but little is known about how it interacts with NSCs during development and maturation.

Results: In this study, we cultured NSCs on TiCT MXene and examined its effects on morphological and electrophysiological properties of NSC-derived neurons.

View Article and Find Full Text PDF

Gene therapy would benefit from the effective editing of targeted cells with CRISPR-Cas9 tools. However, it is difficult to precisely assess the editing performance because the tissues contain many non-targeted cells, which is one of the major barriers to clinical translation. Here, in the ; mice, recapitulating a novel mutation we identified in a hereditary hearing loss pedigree, the high-efficiency editing of CRISPR-Cas9 in hair cells (34.

View Article and Find Full Text PDF

Objectives: This study aims to investigate the effects of multiple sevoflurane exposures in neonatal mice on hearing function in the later life and explores the underlying mechanisms and protective strategies.

Materials And Methods: Neonatal Kunming mice were exposed to sevoflurane for 3 days. Auditory brainstem response (ABR) and distortion product otoacoustic emission (DPOAE) tests, immunofluorescence, patch-clamp recording, and quantitative real-time PCR were performed to observe hearing function, hair cells, ribbon synapses, nerve fibers, spiral ganglion neurons, and oxidative stress.

View Article and Find Full Text PDF

Programmable RNA editing tools enable the reversible correction of mutant transcripts, reducing the potential risk associated with permanent genetic changes associated with the use of DNA editing tools. However, the potential of these RNA tools to treat disease remains unknown. Here, we evaluated RNA correction therapy with Cas13-based RNA base editors in the myosin VI p.

View Article and Find Full Text PDF

Sensory neurons parse millisecond-variant sound streams like birdsong and speech with exquisite precision. The auditory pallial cortex of vocal learners like humans and songbirds contains an unconventional neuromodulatory system: neuronal expression of the estrogen synthesis enzyme aromatase. Local forebrain neuroestrogens fluctuate when songbirds hear a song, and subsequently modulate bursting, gain, and temporal coding properties of auditory neurons.

View Article and Find Full Text PDF
Article Synopsis
  • KCNQ4 mutations cause DFNA2, a type of hearing loss that isn't linked to other health problems.
  • Scientists found a new mutation in a Chinese family that leads to different levels of hearing loss based on genetics.
  • They created a mouse model to study this mutation, showing how hearing loss gets worse over time and affects special cells in the ear.
View Article and Find Full Text PDF

CRISPR/RfxCas13d (CasRx) editing system can specifically and precisely cleave single-strand RNAs, which is a promising treatment for various disorders by downregulation of related gene expression. Here, we tested this RNA-editing approach on Beethoven (Bth) mice, an animal model for human DFNA36 due to a point mutation in Tmc1. We first screened 30 sgRNAs in cell cultures and found that CasRx with sgRNA3 reduced the Tmc1 transcript by 90.

View Article and Find Full Text PDF

The KCNQ family (KCNQ1-KCNQ5) of voltage-gated potassium channels plays critical roles in many physiological and pathological processes. It is known that the channel opening of all KCNQs relies on the signaling lipid molecule phosphatidylinositol 4,5-bisphosphate (PIP2). However, the molecular mechanism of PIP2 in modulating the opening of the four neuronal KCNQ channels (KCNQ2-KCNQ5), which are essential for regulating neuronal excitability, remains largely elusive.

View Article and Find Full Text PDF