Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Danshensu, also known as salvianic acid A, is a primary active compound extracted from a traditional Chinese herb Danshen (Salvia miltiorrhiza). While its antioxidative and neuroprotective effects are well-documented, the underlying mechanisms are poorly understood. In this study, we sought out to investigate if and how Danshensu modulates neuronal excitability and voltage-gated ionic currents in the central nervous system. We prepared brain slices of the mouse brainstem and performed patch-clamp recording in bushy cells in the anteroventral cochlear nucleus, with or without Danshensu incubation for 1 h. QX-314 was used internally to block Na+ current, while tetraethylammonium and 4-aminopyridine were used to isolate different subtypes of K+ current. We found that Danshensu of 100 μm decreased the input resistance of bushy cells by approximately 60% and shifted the voltage threshold of spiking positively by approximately 7 mV, resulting in significantly reduced excitability. Furthermore, we found this reduced excitability by Danshensu was caused by enhanced voltage-gated K+ currents in these neurons, including both low voltage-activated IK,A, by approximately 100%, and high voltage-activated IK,dr, by approximately 30%. Lastly, we found that the effect of Danshensu on K+ currents was dose-dependent in that no enhancement was found for Danshensu of 50 μm and Danshensu of 200 μm failed to cause significantly more enhancement on K+ currents when compared to that of 100 μm. We found that Danshensu reduced neuronal excitability in the central nervous system by enhancing voltage-gated K+ currents, providing mechanistic support for its neuroprotective effect widely seen in vivo.

Download full-text PDF

Source
http://dx.doi.org/10.1097/WNR.0000000000002047DOI Listing

Publication Analysis

Top Keywords

neuronal excitability
12
bushy cells
12
danshensu
10
cochlear nucleus
8
nucleus danshensu
8
central nervous
8
nervous system
8
reduced excitability
8
voltage-gated currents
8
currents
6

Similar Publications

Aging correlates with alterations in metabolism and neuronal function, which affect the overall regulation of energy homeostasis. Recent studies have highlighted that protein O-GlcNAcylation, a common post-translational modification regulating metabolic function, is linked to aging. In particular, elevated O-GlcNAcylation increases energy expenditure, potentially due to alterations in the neuronal function of the hypothalamic arcuate nucleus (ARC), a key brain region for energy balance and metabolic processes.

View Article and Find Full Text PDF

Background: Spinal Cord Injury (SCI) leads to partial or complete sensorimotor loss because of the spinal lesions caused either by trauma or any pathological conditions. Rehabilitation, one of the therapeutic methods, is considered to be a significant part of therapy supporting patients with spinal cord injury. Newer methods are being incorporated, such as repetitive Transcranial Magnetic Stimulation (rTMS), a Non-Invasive Brain Stimulation (NIBS) technique to induce changes in the residual neuronal pathways, facilitating cortical excitability and neuroplasticity.

View Article and Find Full Text PDF

The paraventricular thalamic nucleus (PVT) integrates subcortical signals related to arousal, stress, addiction, and anxiety with top-down cortical influences. Increases or decreases in PVT activity exert profound, long-lasting effects on behavior related to motivation, addiction and homeostasis. Yet the sources of its subcortical excitatory and inhibitory afferents, their distribution within the PVT, and their integration with layer-specific cortical inputs remain unclear.

View Article and Find Full Text PDF

Excitatory glycine receptors control ventral hippocampus synaptic plasticity and anxiety-related behaviors.

Proc Natl Acad Sci U S A

September 2025

Institut de Biologie de l'Ecole Normale Supérieure, Ecole Normale Supérieure, Université Paris Sciences et Lettres, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Paris 75005, France.

Excitatory glycine receptors (eGlyRs), composed of the glycine-binding NMDA receptor subunits GluN1 and GluN3A, have recently emerged as a novel neuronal signaling modality that challenges the traditional view of glycine as an inhibitory neurotransmitter. Unlike conventional GluN1/GluN2 NMDARs, the distribution and role of eGlyRs remain poorly understood. Here, we show that eGlyRs are highly enriched in the ventral hippocampus (VH) and confer distinct properties on this brain region.

View Article and Find Full Text PDF

Neuroinflammation, a vital protective response for tissue homeostasis, becomes a detrimental force when chronic and dysregulated, driving neurological disorders like Alzheimer's, Parkinson's, and Huntington's diseases. Potassium (K) channels maintain membrane potential and cellular excitability in neurons and glia within the intricate CNS signaling network. Neuronal injury or inflammation can disrupt K channel activity, leading to hyperexcitability and chronic pain.

View Article and Find Full Text PDF