9,493 results match your criteria: "Korea Institute of Science and Technology[Affiliation]"

Aging correlates with alterations in metabolism and neuronal function, which affect the overall regulation of energy homeostasis. Recent studies have highlighted that protein O-GlcNAcylation, a common post-translational modification regulating metabolic function, is linked to aging. In particular, elevated O-GlcNAcylation increases energy expenditure, potentially due to alterations in the neuronal function of the hypothalamic arcuate nucleus (ARC), a key brain region for energy balance and metabolic processes.

View Article and Find Full Text PDF

Solvent-Directed Self-Assembly of Sorafenib into Spherical Particles for Enhanced Anticancer Efficacy.

Nano Lett

September 2025

KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea.

Sorafenib, a clinically approved multityrosine kinase inhibitor, exhibits poor aqueous solubility, which limits its bioavailability and therapeutic efficacy. In this study, we introduce a solvent-directed self-assembly strategy to modulate the nanostructure of sorafenib without the use of external carriers or complex formulation techniques. In pure water, sorafenib forms large lamellar aggregates, whereas in 30% methanol-water mixtures, it self-assembles into uniform spherical particles approximately 450 nm in diameter.

View Article and Find Full Text PDF

Multi-modal virtual reality system for tinnitus treatment methods and validation.

PLoS One

September 2025

Department of Otorhinolaryngology-Head and Neck Surgery, Ansan Hospital, Korea University College of Medicine, Ansan, Republic of Korea.

Virtual reality (VR) has been utilized in clinical treatment because it can efficiently simulate situations that are difficult to control in the real world. In this study, we evaluated the efficacy of VR in patients with chronic subjective tinnitus. We assessed the clinical effectiveness based on electroencephalogram (EEG) analysis and questionnaire responses after patients participated in a 6-8-week VR-based tinnitus relief program.

View Article and Find Full Text PDF

Unlabelled: The combination of extract and its active compounds, curcumin and bisdemethoxycurcumin, as photosensitizers with ultraviolet A (UVA) light has potential in alleviating psoriasis. This study evaluated their therapeutic effects on psoriasis-like lesions induced via imiquimod application in BALB/c mice. Treatments with extract, curcumin, or bisdemethoxycurcumin combined with UVA (TUVA, CUVA, and BUVA, respectively) were administered.

View Article and Find Full Text PDF

Human opsin restoration by histone methylation using methyltransferase fusion protein SETD7-dCas9.

Mol Ther Nucleic Acids

September 2025

Department of Genetics and Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea.

Epigenetic modulation enables precise gene regulation without altering DNA sequences. While histone acetylation has been widely utilized for gene activation, the therapeutic potential of histone methylation remains underexplored. In this study, we developed a new epigenetic activator by fusing the histone methyltransferase SETD7 to deactivated Cas9 (dCas9).

View Article and Find Full Text PDF

Atomic layer deposition (ALD) enables an excellent surface coverage and uniformity in the preparation of large-area metal-oxide thin films. In particular, ALD-processed SnO has demonstrated great potential as an electron transport layer in flexible perovskite solar cells (PSCs) and tandem modules. However, the poor electrical conductivities and surface wettabilities of amorphous SnO remain critical challenges for commercialization.

View Article and Find Full Text PDF

Metabolic and bariatric surgery induces metabolic benefits beyond weight loss, including improved insulin sensitivity, type 2 diabetes (T2D) remission, and reduced inflammation. Recent metabolomics research highlights amino acid metabolites-branched-chain amino acids, aromatic amino acids, and tryptophan-derived compounds-as key biomarkers for predicting surgical outcomes. Elevated preoperative levels of isoleucine, phenylalanine, levodopa, and 3-hydroxyanthranilic acid are associated with improved glycemic control and T2D remission.

View Article and Find Full Text PDF

The regulation of photoperiod and light intensity significantly affected Agastache rugosa by enhancing growth, modifying flowering dynamics, and promoting the accumulation of key phenolic compounds. Agastache rugosa is a medicinal and aromatic plant valued for its bioactive compounds, which contribute to its application in the flavoring, perfume, and food industries. However, variability in the composition of the bioactive compounds poses challenges for its commercial utilization.

View Article and Find Full Text PDF

Determination of neonicotinoids in honey and pollen with probabilistic risk assessment for humans and pollinators in South Korea.

Sci Total Environ

September 2025

Center for Climate and Carbon Cycle Research, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Energy & Environment Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea. Electronic address:

Neonicotinoid insecticides have been identified as significant contributors to the decline of pollinators. To evaluate potential exposure of pollinators to neonicotinoids in South Korea, 79 honey samples and 27 pollen samples were obtained from agricultural, mountain, and urban areas. These samples were analyzed for 17 compounds, including neonicotinoids and their metabolites using liquid chromatography coupled with mass spectrometry.

View Article and Find Full Text PDF

The thermodynamic equilibrium assumption often invoked in modeling ion migration in solid-state materials remains insufficient to capture the true migration behavior of Li ions, particularly in less-crystalline superionic conductors that exhibit anomalously high Li ion conductivity. Such materials challenge classical frameworks and necessitate a lattice dynamics-based perspective that explicitly accounts for nonequilibrium phonon interactions and transient structural responses. Here, we uncover a phonon-governed Li ion migration mechanism in garnet-structured superionic conductors by comparing Ta-doped LiLaZrTaO (LLZTO4) to its undoped analogue, LiLaZrAlO (LLZO).

View Article and Find Full Text PDF

NiO is a p-type semiconductor widely used as a hole transport material in perovskite solar cells (PSCs), yet the impact of fabrication methods on its interfacial properties and the underlying mechanisms remains unclear. This study investigates how the fabrication process─nanoparticle precursor (NP NiO) and sputtering deposition (SP NiO)─and interfacial space charge effects influence charge transport and device performance in NiO/perovskite systems. SP NiO exhibits a higher Ni/Ni ratio and greater conductivity but induces significant hole depletion and band bending at the interface, leading to reduced open-circuit voltage and efficiency.

View Article and Find Full Text PDF

Monolithic perovskite/silicon tandem (PST) solar cells are rapidly emerging as next-generation solar cells with significant potential for commercialization. This study presents a proof of concept for a silicon diffused junction-based PST cell, utilizing a passivated emitter rear contact (PERC) cell with a low-temperature (<200 °C) laser-fired contact process to minimize thermal damage. By introducing amorphous silicon to the emitter surface of PERC bottom cell, the open circuit voltage (V) improve from 0.

View Article and Find Full Text PDF

Fluorescence-guided tumor resection with a cathepsin B-activatable, EGFR-targeted probe and a dual-mode surgical exoscope.

Eur J Med Chem

August 2025

Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea. Electronic address:

Fluorescence-guided surgery enhances surgical precision by enabling real-time tumor visualization. Here, we developed a cathepsin B-activatable imaging probe conjugated to the EGFR-targeting antibody cetuximab (Cetux-CB probe) for fluorescence-guided resection of triple-negative breast cancer (TNBC). The probe consists of a cathepsin B-sensitive peptide linker, a near-infrared fluorophore (Flamma™ Fluors 749), and a quencher (qFlamma Black01), enabling enzymatic activation following tumor-specific accumulation.

View Article and Find Full Text PDF

Unusual Ferromagnetic Band Evolution and High Curie Temperature in Monolayer 1T-CrTe on Bilayer Graphene.

Small

September 2025

Department of Semiconductor Physics and Institute of Quantum Convergence Technology, Kangwon National University, Chuncheon, 24341, South Korea.

2D van der Waals ferromagnets hold immense promise for spintronic applications due to their controllability and versatility. Despite their significance, the realization and in-depth characterization of ferromagnetic materials in atomically thin single layers, close to the true 2D limit, has been scarce. Here, a successful synthesis of monolayer (ML) 1T-CrTe is reported on a bilayer graphene (BLG) substrate via molecular beam epitaxy.

View Article and Find Full Text PDF

Coelectrolysis of HO and CO using high-temperature solid oxide cells offers a highly efficient solution for converting greenhouse gases into valuable fuels and chemicals. Although Pt is an effective catalyst for this reaction, its high cost has limited its usage. Herein, we present that Pt-containing alloy catalysts with increased entropy exhibit high Pt utilization efficiency, catalytic performance, and thermal stability.

View Article and Find Full Text PDF

Context: Although salivary steroid sampling offers several advantages, the diagnostic potential of salivary steroid metabolites remains largely unexplored.Objective To evaluate the diagnostic utility of salivary steroid profiling in patients with adrenal diseases.

Design: Prospective multicenter study.

View Article and Find Full Text PDF

Chiral crystals with well-defined handedness in atomic arrangements exhibit properties such as spin selectivity, asymmetric magnetoresistance, and skyrmions. Although similar geometry-induced phenomena in chiral organic molecule-based systems were observed, synthesizing uniform inorganic nanostructures with desired chirality using a scalable method remains challenging. We electrochemically synthesized chiral ferromagnetic cobalt-iron nanohelices from nanoparticles in anodized aluminum oxide templates.

View Article and Find Full Text PDF

ATE1 promotes breast cancer progression via arginylation-dependent regulation of MAPK-MYC signaling.

Cell Commun Signal

September 2025

Nucleic Acid Therapeutics Research Center, Korea Research Institute of Bioscience and Biotechnology, Ochang-eup, Cheongju-si, Chungcheongbuk-do, 28116, Republic of Korea.

Background: Arginyl-tRNA-protein transferase (ATE1) catalyzes N-terminal arginylation, a regulatory protein modification implicated in various cellular processes, including proliferation, apoptosis, and migration. Although ATE1 has context-dependent roles in cancer, its specific function in breast cancer remains unclear. This study investigates the oncogenic role of ATE1 across multiple breast cancer subtypes and its underlying molecular mechanisms.

View Article and Find Full Text PDF

NiO is widely used for hole-transporting layers in p-i-n-type perovskite solar cells (PSCs) due to its stability, wide bandgap (≈3.5 eV), and solution processability. However, during solution processing, oxygen exposure can induce non-stoichiometry, forming Ni.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is a neurodegenerative disorder marked by the accumulation of amyloid-β (Aβ) plaques and tau neurofibrillary tangles, leading to cognitive decline. Recent research has highlighted the involvement of the gut-brain axis (GBA) in AD progression, suggesting that the disease may also affect the gut.

Objective: To investigate the transmission of tau from the brain to the gut via the vagus nerve and its impact on gut function, we aimed to develop a novel in vitro system to simulate the GBA.

View Article and Find Full Text PDF

Synthesis of Sulfur-Doped PtRuNi Alloy Catalyst for Efficient Hydrogen Evolution Reaction.

Small Methods

September 2025

Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea.

Green hydrogen production via electrocatalytic water splitting is a promising strategy for enabling renewable energy technologies. To improve hydrogen generation efficiency, extensive efforts have been devoted to developing electrocatalysts with lower energy requirements and higher stability. Among these, randomly mixed alloy catalysts have attracted significant attention due to their ability to exhibit synergistic effects surpassing those of single-component materials.

View Article and Find Full Text PDF

Engineering in vivo behavior of DNA nanostructures toward organ-targeted drug delivery.

Adv Drug Deliv Rev

August 2025

Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea; Division of Biomedical Science and Technology, KIST School, Korea University of Science and Technology (UST), Hwarangno 14-gil 5, Se

DNA nanostructures have emerged as programmable and biocompatible platforms for drug delivery, offering precise control over size, shape, and surface properties. Recent advances have demonstrated their potential for organ-targeted delivery by utilizing ligand conjugation, structural engineering, and modulation of protein corona composition. Despite their promise, key challenges remain in predicting organ specificity and ensuring structural stability in vivo.

View Article and Find Full Text PDF

Molecular thermoelectric materials, which harness molecular-level design principles to optimize energy conversion, have emerged as a promising strategy for addressing the limitations of bulk inorganic thermoelectrics, such as brittleness and high production costs. In this study, a layer-by-layer (LbL) engineered HKUST-1 surface-mounted metal-organic framework (SURMOF) nanofilm is proposed as a promising thermoelectric nanostructure, systematically characterized across its thickness. By employing LbL growth of HKUST-1 on self-assembled monolayers (SCCOOH, n = 2, 10), nanofilms ranging from 5 to 30 nm in thickness are successfully fabricated.

View Article and Find Full Text PDF

Membrane-targeted DNA frameworks with biodegradability recover cellular function and morphology from frozen cells.

Trends Biotechnol

August 2025

Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea; Department of Biomicro System Technology, Korea University, Seoul 02841, Republic of Korea; Ice-Biointerface Augmentation Center for Biopreservation, Korea University, Seoul 02841, Republic of Korea;

Cell freezing is critical for the long-term preservation of biological materials, but is limited by the cytotoxicity and inefficacy of conventional cryoprotective agents, such as dimethyl sulfoxide (DMSO). Here, we introduce DNA frameworks (DFs) as a nanoengineered programmable class of cryoprotectants designed to address these challenges. The DFs feature a programmable scaffolded structure offering large flexible wireframe contacts, cellular target ability, and biodegradability.

View Article and Find Full Text PDF

Growing interest in organic electrochemical synaptic transistors (OECT-STrs) based on conjugated polymer mixed ionic-electronic conductors (CP-MIECs) has intensified, leading to the need to establish clear design rules and fundamentally understand the distinct roles of crystalline and amorphous domains in the electrochemical doping behavior of CP-MIEC films. Here, OECT-STrs based on regioregular-block-regiorandom (regioblock) conjugated copolymers with precisely controlled crystallinity are demonstrated. The crystallinity of a poly(3-hexylthiophene) regioblock copolymer is systematically tuned by varying the fraction of regiorandom blocks without altering the geometry or orientation of the crystalline phase.

View Article and Find Full Text PDF