98%
921
2 minutes
20
NiO is widely used for hole-transporting layers in p-i-n-type perovskite solar cells (PSCs) due to its stability, wide bandgap (≈3.5 eV), and solution processability. However, during solution processing, oxygen exposure can induce non-stoichiometry, forming Ni. While Ni enhances hole mobility, it also promotes redox reactions at the interface, undermining long-term stability. To utilize the improved mobility without sacrificing stability, bilayer NiO films with controlled Ni concentrations can be fabricated. Sputtering is ideal for this, enabling precise control of oxygen partial pressure during deposition. This study utilizes sputtering to regulate Ni levels and optimize the ratio of two NiO layers in bilayer films, improving charge extraction and transport. A fabricated perovskite module with a 16.0 cm aperture area achieves a photo-conversion efficiency (PCE) of 16.5%. Additionally, the module retains 80% of its initial PCE after 1000 h under continuous 1-sun illumination, thanks to the stable bilayer NiO structure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smtd.202501325 | DOI Listing |
ACS Appl Mater Interfaces
September 2025
Advanced Photovoltaics Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.
NiO is a p-type semiconductor widely used as a hole transport material in perovskite solar cells (PSCs), yet the impact of fabrication methods on its interfacial properties and the underlying mechanisms remains unclear. This study investigates how the fabrication process─nanoparticle precursor (NP NiO) and sputtering deposition (SP NiO)─and interfacial space charge effects influence charge transport and device performance in NiO/perovskite systems. SP NiO exhibits a higher Ni/Ni ratio and greater conductivity but induces significant hole depletion and band bending at the interface, leading to reduced open-circuit voltage and efficiency.
View Article and Find Full Text PDFAdv Mater
September 2025
Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Boulevard, Shenzhen, 518055, China.
Phase segregation remains one of the most critical challenges limiting the performance and long-term operational stability of wide-bandgap perovskite solar cells (PSCs). This issue is especially pronounced in 1.84 eV wide-bandgap (WBG) perovskites, where severe halide phase segregation leads to compositional heterogeneity and accelerated device degradation.
View Article and Find Full Text PDFSmall Methods
September 2025
Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
Monolithic perovskite/silicon tandem (PST) solar cells are rapidly emerging as next-generation solar cells with significant potential for commercialization. This study presents a proof of concept for a silicon diffused junction-based PST cell, utilizing a passivated emitter rear contact (PERC) cell with a low-temperature (<200 °C) laser-fired contact process to minimize thermal damage. By introducing amorphous silicon to the emitter surface of PERC bottom cell, the open circuit voltage (V) improve from 0.
View Article and Find Full Text PDFAdv Mater
September 2025
Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan, 44919, Republic of Korea.
Spiro-OMeTAD has remained the benchmark hole-transporting material (HTM) in state-of-the-art perovskite solar cells, owing to its favorable energy level alignment and excellent interfacial compatibility. However, its practical implementation is critically hindered by the intrinsic instabilities introduced by conventional dopants such as lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and 4-tert-butylpyridine (tBP). While these dopants enhance electrical conductivity, they concurrently initiate multiple degradation pathways-including ionic migration, radical deactivation, and moisture/thermal-induced morphological failure-thereby compromising device longevity and reproducibility.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Institute of Chemistry of OrganoMetallic Compounds (ICCOM), National Research Council of Italy (CNR), Via G. Moruzzi 1, 56124 Pisa, Italy.
Mixed-halide perovskites of formula MAPb(BrI), where MA is methylammonium, are of great interest for optoelectronic applications (particularly high-efficiency solar cells) due to their finely tunable bandgap, which enables precise control over light absorption. However, their stability remains a critical challenge, notably due to reversible photoinduced halide segregation. Under continuous illumination, this process leads to the formation of Br- and I-rich domains, which lower device performance by introducing low-bandgap regions that trap charge carriers.
View Article and Find Full Text PDF