A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Membrane-targeted DNA frameworks with biodegradability recover cellular function and morphology from frozen cells. | LitMetric

Membrane-targeted DNA frameworks with biodegradability recover cellular function and morphology from frozen cells.

Trends Biotechnol

Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea; Department of Biomicro System Technology, Korea University, Seoul 02841, Republic of Korea; Ice-Biointerface Augmentation Center for Biopreservation, Korea University, Seoul 02841, Republic of Korea;

Published: August 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Cell freezing is critical for the long-term preservation of biological materials, but is limited by the cytotoxicity and inefficacy of conventional cryoprotective agents, such as dimethyl sulfoxide (DMSO). Here, we introduce DNA frameworks (DFs) as a nanoengineered programmable class of cryoprotectants designed to address these challenges. The DFs feature a programmable scaffolded structure offering large flexible wireframe contacts, cellular target ability, and biodegradability. Cholesterol-functionalized DFs outperformed conventional cryoprotectants in the recovery and maintenance of cellular functionality and morphology of frozen cells. Their cryoprotective mechanism enables targeted binding to the cell membrane, minimizing intracellular penetration or uptake, inhibits intracellular and extracellular ice growths, and promotes efficient post-thaw degradation to mitigate toxicity risks. By combining membrane-targeting specificity, cryoprotective efficacy, and biocompatibility, these DFs represent a transformative advance in cell cryopreservation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tibtech.2025.07.028DOI Listing

Publication Analysis

Top Keywords

dna frameworks
8
morphology frozen
8
frozen cells
8
membrane-targeted dna
4
frameworks biodegradability
4
biodegradability recover
4
recover cellular
4
cellular function
4
function morphology
4
cells cell
4

Similar Publications