98%
921
2 minutes
20
Aminoglycoside antibiotics (AGAs) are widely used in life-threatening infections, but they accumulate in cochlear hair cells (HCs) and result in hearing loss. Increases in adenosine triphosphate (ATP) concentrations and P2X7 receptor expression were observed after neomycin treatment. Here, we demonstrated that P2X7 receptor, which is a non-selective cation channel that is activated by high ATP concentrations, may participate in the process through which AGAs enter hair cells. Using transgenic knockout mice, we found that P2X7 receptor deficiency protects HCs against neomycin-induced injury in vitro and in vivo. Subsequently, we used fluorescent gentamicin-Fluor 594 to study the uptake of AGAs and found fluorescence labeling in wild-type mice but not in P2rx7-/- mice in vitro. In addition, knocking-out P2rx7 did not significantly alter the HC count and auditory signal transduction, but it did inhibit mitochondria-dependent oxidative stress and apoptosis in the cochlea after neomycin exposure. We thus conclude that the P2X7 receptor may be linked to the entry of AGAs into HCs and is likely to be a therapeutic target for auditory HC protection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.nbd.2023.106176 | DOI Listing |
Bone
September 2025
Department of Bone and Mineral Research, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka, 594-1101, Japan. Electronic address:
Hypophosphatasia (HPP) is caused by inactivating variants of ALPL, the gene encoding tissue non-specific alkaline phosphatase (TNSALP). In order to deepen our understanding of the pathogenic mechanisms of HPP, we herein generated ALPL-knockout (KO) human induced pluripotent stem (iPS) cells by applying CRISPR/Cas9-mediated gene deletion to an iPS clone derived from a healthy subject. We analyzed two ALPL-KO clones, one ALPL-hetero KO clone, and a control clone isogenic except for ALPL.
View Article and Find Full Text PDFCurr Eye Res
September 2025
School of Medical Laboratory, Shandong Second Medical University, Weifang, Shandong, China.
Purpose: To study the regulatory effects and mechanisms of P2X7 receptors(P2X7R) on CD4 regulatory T cells (Tregs) and pathogenic CD4 T effector cells (Th1 cells).
Methods: In this research, an experimental autoimmune uveitis (EAU) mouse model was established to investigate the impact of P2X7R on Th1 and Treg immune responses.
Results: During the initial stage of EAU, appropriate activation of P2X7R leads to an enhanced Th1 immune response, including an increased proportion of CD4 IFN- Th1 cells, increased production of cytokines tumor necrosis factor-alpha (TNF-) and interferon-gamma (IFN-), and upregulation of transcription factor T-bet expression.
ACS Omega
August 2025
Institute of Organic Chemistry, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz, Austria.
The P2X receptor is an emerging target for molecular imaging of inflammation in the brain and peripheral tissues. In this work, we focus on five triazole-based ligands with high affinity and selectivity for P2X receptors (, , , , and ), which are amenable to autoradiography and positron emission tomography (PET) imaging. We studied the phenomenon of conformational and rotational changes of these molecules by NMR and calculations.
View Article and Find Full Text PDFPurinergic Signal
August 2025
School of Medical Laboratory, Shandong Second Medical University, Weifang, 261053, Shandong, China.
The P2X7 receptor is a trimeric ion channel purinergic receptor. It plays a crucial part in the pathophysiology of cancers and a variety of inflammatory diseases and is widely expressed in different cell types. Leukemia represents a type of malignant clonal disorder that impacts the hematopoietic stem cells.
View Article and Find Full Text PDFToxicol In Vitro
December 2025
Postgraduate Program in Biological Sciences, Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil.
An in vitro model using human peripheral blood mononuclear cells (PBMCs) was established to investigate the cytotoxic, oxidative and inflammatory effects and changes in purinergic system parameters caused by mercuric chloride (HgCl). Cells were exposed to concentrations of HgCl (0.05, 0.
View Article and Find Full Text PDF