10,649 results match your criteria: "Northwestern Polytechnical University; twang@nwpu.edu.cn.[Affiliation]"

Bimorph Soft Actuators Based on Isostructural Heterogeneous Janus Films.

ACS Nano

September 2025

State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.

Bimorph soft actuators, traditionally composed of two materials with distinct responses to external stimuli, often face durability challenges due to structural incompatibility. Here, we propose an alternative design employing free-standing, isostructural heterogeneous Janus (IHJ) films that harmonize stability with high actuation efficiency. These IHJ films were fabricated through a vacuum self-assembly process, consisting of TiCT MXene nanosheets and hybrid graphene oxide (GO)-biomass bacterial cellulose (BC), with a well-matched two-dimensional lattice structure.

View Article and Find Full Text PDF

High-sensitivity, multiparameter sensing is increasingly critical for environmental monitoring and electronics. Existing sensing platforms struggle to integrate precise, rapid, and stable monitoring of parts per billion-level hazardous gases and temperature within a single miniaturized device. This study developed a novel sensor based on two-dimensional (2D) indium selenide (InSe), complemented by first-principles density functional theory calculations elucidating the layer-dependent NO adsorption mechanism.

View Article and Find Full Text PDF

The inhibition of dependent glutamine metabolism is an effective treatment for triple-negative breast cancer (TNBC) starvation, but it is limited by compensatory glycolysis and inadequate delivery efficiency. Herein, we construct a pH-responsive size/charge-reprogrammed micelle with hierarchical delivery characteristics for TNBC suppression with glutamine depletion and vessel blockade. It consists of a positively charged prodrug micelle chemically grafted with the glutamine transport inhibitor V9302 as the inner core layer, the neovascular disruptor CA4P adsorbed in the middle layer, and a pH-responsive peelable polymer as the outer shell.

View Article and Find Full Text PDF

Engineering Covalent and Noncovalent Interface Synergy in MXenes for Ultralong-life and Efficient Energy Storage.

Angew Chem Int Ed Engl

September 2025

Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, P.R. China.

MXenes serve as pivotal candidates for pseudocapacitive energy storage owing to sound proton/electron-transport capability and tunable topology. However, the metastable surface terminal properties and the progressive oxidation leads to drastic capacity fading, posing significant challenges for sustainable energy applications. Here, with the aramid nanofiber as the interface mediator, we engineer the thermal reconstruction of MXenes to synergistically introduce interfacial covalent and noncovalent interactions, resulting in a high specific capacitance of 531.

View Article and Find Full Text PDF

Epilepsy with its complex seizure mechanisms and diverse clinical manifestations, presents numerous challenges for clinical diagnosis and treatment, while electroencephalography (EEG) plays a crucial and irreplaceable role in its diagnosis. Although general-purpose foundation models have demonstrated some capability in knowledge processing, they still face challenges in capturing specific disease features and dealing with data scarcity in highly specialized domains such as epilepsy. To address these issues, we propose a domain-specific foundation model for epilepsy-EpilepsyFM, designed to learn generalized representations of epilepsy to support various downstream tasks.

View Article and Find Full Text PDF

Aerobic glycolysis is critical for tumor development and metastasis. Regulating the activity of vital metabolic enzymes in the tumor glycolysis process, such as hexokinase 2 (HK-2), is expected for tumor treatment. However, conventional small molecule inhibitors only block the activity of proteases with consistently high doses via occupation-driven pattern, leading to off-target effects which limit their clinical application.

View Article and Find Full Text PDF

Single Te Nanoribbon for Disrupting Conventional Sensitivity-Power Limits of Flexible Strain Sensors.

Small

September 2025

State Key Laboratory of Flexible Electronics (LoFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China.

Flexible strain sensors are pivotal for the advancement of robotics, wearable healthcare, and human-machine interaction in the post-Moore era. However, conventional materials struggle to simultaneously achieve high sensitivity, a broad strain range, and low power consumption for cutting-edge applications. In this work, the issue is addressed through single crystal 1D tellurium nanoribbons (NRs), which are synthesized on SiO/Si substrate by hydrogen-assisted chemical vapor deposition (CVD) method.

View Article and Find Full Text PDF

Efficient energy transfer in a hybrid organic-inorganic van der Waals heterostructure.

Sci Adv

September 2025

National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.

Two-dimensional (2D) materials offer strong light-matter interaction and design flexibility beyond bulk semiconductors, but an intrinsic limit is the low absorption imposed by the atomic thickness. A long-sought-after goal is to achieve complementary absorption enhancement through energy transfer (ET) to break this limit. However, it is found challenging due to the competing charge transfer (CT) process and lack of resonance in exciton states.

View Article and Find Full Text PDF

Achieving uniform perovskite thin films via inkjet printing remains a significant challenge due to the pervasive coffee-ring effect. Here, we present a solute engineering strategy that incorporates shape-anisotropic perovskite nanorods into a single-solvent ink formulation, effectively suppressing coffee-ring formation and yielding ultraflat films with an average roughness (Ra) as low as 0.226 nm.

View Article and Find Full Text PDF

Design and implementation of a writing-stroke motor imagery paradigm for multi-character EEG classification.

Neuroscience

September 2025

College of Electrical and Control Engineering, Xi'an University of Science and Technology, Xi'an 710054, China; Xi'an Key Laboratory of Electrical Equipment Condition Monitoring and Power Supply Security., Xi'an 710054, China.

Motor imagery (MI) based brain-computer interfaces (BCI) decode neural activity to generate command outputs. However, the limited number of distinguishable commands in traditional MI-BCI systems restricts practical applications. To overcome this limitation, we propose a multi-character classification framework based on Electroencephalography (EEG) signals.

View Article and Find Full Text PDF

Targeting Ferroptosis: Emerging Insights into Osteoporosis Mechanisms.

Biology (Basel)

August 2025

Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710129,

Ferroptosis, a distinct form of programmed cell death characterized by iron-dependent lipid peroxidation, has emerged as a critical factor in the pathogenesis of various diseases. Given the increasing prevalence of osteoporosis worldwide and the increasing incidence of osteoporosis, understanding the molecular mechanisms underlying bone loss is imperative for developing targeted therapies. Recent evidence suggests that ferroptosis plays a pivotal role in osteoporosis by influencing the balance between osteoblast and osteoclast activity.

View Article and Find Full Text PDF

Unsymmetrical dimethylhydrazine (UDMH) is a widely used hypergolic rocket fuel. It is one of the most commonly used fuels for attitude control engines, such as those in missiles, satellites, spacecraft, and launch vehicles. We conducted a high-level theoretical study to develop a detailed combustion kinetic mechanism for UDMH, focusing on crucial elementary reactions.

View Article and Find Full Text PDF

33 Unresolved Questions in Nanoscience and Nanotechnology.

ACS Nano

September 2025

MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China.

Significant advances in science and engineering often emerge at the intersections of disciplines. Nanoscience and nanotechnology are inherently interdisciplinary, uniting researchers from chemistry, physics, biology, medicine, materials science, and engineering. This convergence has fostered novel ways of thinking and enabled the development of materials, tools, and technologies that have transformed both basic and applied research, as well as how we address critical societal challenges.

View Article and Find Full Text PDF

Semi-LLIE: Semi-supervised contrastive learning with Mamba-based low-light enhancement.

Neural Netw

August 2025

School of Artificial Intelligence, OPtics and ElectroNics (iOPEN), Northwestern Polytechnical University, Xi'an, 710072, Shannxi, China; Key Laboratory of Intelligent Interaction and Application, Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, 710072, S

Recent advances in low-light image enhancement (LLIE) have achieved impressive progress. However, the scarcity of paired data has emerged as a significant obstacle to further advancements. In this work, we propose Semi-LLIE, a novel semi-supervised framework that introduces unpaired low- and normal-light images into model training via the mean-teacher paradigm.

View Article and Find Full Text PDF

Flying vertebrates use specialized wingbeat kinematics in hovering, takeoff, and landing, featuring ventrally anterior downstrokes and aerodynamically inactive upstrokes to enhance aerodynamic characteristics at low airspeeds. Rarely implemented in robotics, this inspired RoboFalcon2.0, a flapping-wing robot with reconfigurable mechanisms performing bioinspired flap-sweep-fold (FSF) motion for controlled bird-style takeoff.

View Article and Find Full Text PDF

Bioinspired twist-hyperbolic metamaterial for impact buffering and self-powered real-time sensing in UAVs.

Sci Adv

September 2025

Beijing Key Laboratory of Micro-Nano Energy and Sensor, Center for High-Entropy Energy and Systems, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China.

Turbulence-induced vibrations pose substantial risks to aircraft structural integrity and flight stability, particularly in unmanned aerial vehicles (UAVs), where real-time impact monitoring and lightweight protection are critical. Here, we present a bioinspired twist-hyperbolic metamaterial (THM) integrated with a triboelectric nanogenerator (TENG) for simultaneously impact buffering and self-powered sensing. The THM-TENG protector exhibits tunable stiffness (40 to 4300 newtons per millimeter), ~70% impact energy absorption, and achieves a specific energy absorption of ~0.

View Article and Find Full Text PDF

Neuroendocrine prostate cancer (NEPC) evolves as an aggressive phenotype during prolonged androgen deprivation therapy, lacking effective clinical management. Here, we elucidated a reciprocal metabolic-epigenetic mechanism involving a positive feedback loop between glycolysis and the transcription factor LHX2 that promotes PCa progression. Mechanistically, enzalutamide-mediated inhibition of the androgen receptor (AR) led to upregulation of key glycolytic enzymes.

View Article and Find Full Text PDF

Intermolecular Electron Transfer: Toward a General Photochemical Engine for Type I Photodynamic Therapy.

Small Methods

September 2025

State Key Laboratory of Flexible Electronics (LoFE), Frontiers Science Center for Flexible Electronics, and Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, P. R. China.

Hypoxia is an intrinsic characteristic within tumors or infected tissues, which poses a significant barrier to effective photodynamic therapy (PDT). Type I PDT is a promising complement or alternative to conventional Type II PDT owing to its reduced or absent reliance on molecular oxygen. Type I photosensitizers (PSs) are essential to Type I PDT, which undergoes photoinduced electron transfer with biological substrates to produce cytotoxic radical species (O •, •OH) for the targeted destruction of pathological tissues.

View Article and Find Full Text PDF

The neuroactive β-N-oxalyl-L-α,β-diaminopropionic acid (β-ODAP) was first identified in Lathyrus sativus and present also in several Chinese traditional herbs including Panax notoginseng. It exhibit toxicological effects as the causative agent of neurolathyrism when L. sativus was over-consumed under drought-triggered famines or pharmacological effects including neuroprotection and wound healing.

View Article and Find Full Text PDF

Objective: The cause of increased knee pain related to quadriceps weakness in knee osteoarthritis remains unclear. This study aimed to assess the impact of alterations in the effusion-synovitis, a special kind of nociceptive structure, on changes in knee pain associated with quadriceps weakness.

Methods: Based on the osteoarthritis initiative cohort, knees with comprehensive records of quadriceps strength, effusion-synovitis, and knee pain assessments at baseline, 12-month and 24-month intervals were included.

View Article and Find Full Text PDF

Poisoning mechanism of potassium and calcium on a Mn-based quasi-MOF de-NO catalyst.

J Hazard Mater

August 2025

State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China. Electronic address:

Despite extensive research on alkali resistance of denitrification (de-NO) catalysts, the synergistic poisoning mechanism of alkali and alkaline-earth metals on de-NO catalysts, particularly Mn-based catalysts, remains unresolved. This study investigates the co-poisoning effects of K and Ca on the de-NO activity of Mn-based quasi-MOF (Metal Organic Framework) catalysts, specifically TEOS&Mn-BTC (a catalyst previously designed by our team, TEOS and BTC represent tetraethyl orthosilicate and trimesic acid, respectively). We found that the coexistence of K and Ca elevates the d-band center, which improves the electron mobility ability of the catalyst, thus enhancing the electron transfer between Mn and O in the Si-O-Mn electron-metal-carrier coordination structure, which further promotes the occurrence of acid and redox circulations while strengthening the electron-metal-carrier interaction.

View Article and Find Full Text PDF

Manganese sulfate is a derivative of manganese resources with multiple applications. In addition to its traditional uses, it plays a critical role in various environmental and energy sectors. Manganese sulfate not only contributes to water treatment but also plays a significant role in the production of lithium-ion battery materials.

View Article and Find Full Text PDF

High-efficient discovering the potent anti-Notum agents from herbal medicines for combating glucocorticoid-induced osteoporosis.

Acta Pharm Sin B

August 2025

State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, C

Notum, a negative feedback regulator of the Wnt signaling, has emerged as a promising target for treating glucocorticoid-induced osteoporosis (GIOP). This study showcases an efficient strategy for discovering the anti-Notum constituents from herbal medicines (HMs) as novel anti-GIOP agents. Firstly, a rapid-responding near-infrared fluorogenic substrate for Notum was rationally engineered for high-throughput identifying the anti-Notum HMs.

View Article and Find Full Text PDF

The pursuit of global carbon neutrality necessitates addressing the dual challenge of enhancing solar energy utilization while improving thermal comfort in high-rise residential areas, particularly in Yulin, northern Shaanxi, China, where abundant solar resources exist but maximizing solar acquisition often compromises summer thermal environment quality. This resource-comfort contradiction highlights the need for balanced architectural strategies in regions with pronounced seasonal variations. Building morphological parameter optimization is crucial for balancing annual solar energy capture against summer overheating risks, yet research remains insufficient.

View Article and Find Full Text PDF

This study aims to develop a human-machine co-creation framework for automobile seat conceptual design, leveraging an improved Deep Convolutional Generative Adversarial Network (ResNet-DCGAN) to lower design barriers for non-professionals and enhance cross-disciplinary innovation. By constructing a dataset of automobile seat images and implementing generative design strategies across three key stages, this research seeks to demonstrate the feasibility of AI-driven creativity augmentation in product design. The cooperation of human-machine co-creation can stimulate the innovative thinking of participants from different industries, reduce the design difficulty, arouse participants' enthusiasm, and provide abundant creativity in designing automobile seats.

View Article and Find Full Text PDF