Proc Natl Acad Sci U S A
September 2025
Genome editing with CRISPR-Cas systems hold promise for treating a wide range of genetic disorders and cancers. However, efficient delivery of genome editors remains challenging due to the requirement for the simultaneous delivery or intracellular generation of Cas proteins, guide RNAs, and, in some applications, donor DNAs. Furthermore, the immunogenicity and toxicity of delivery vehicles can limit the safety and efficacy of genetic medicines.
View Article and Find Full Text PDFSignificant advances in science and engineering often emerge at the intersections of disciplines. Nanoscience and nanotechnology are inherently interdisciplinary, uniting researchers from chemistry, physics, biology, medicine, materials science, and engineering. This convergence has fostered novel ways of thinking and enabled the development of materials, tools, and technologies that have transformed both basic and applied research, as well as how we address critical societal challenges.
View Article and Find Full Text PDFJ Am Chem Soc
August 2025
Iridium (Ir) catalysts are essential for the acidic oxygen evolution reaction (OER) in proton-exchange membrane water electrolyzers (PEMWEs), but their high cost, scarcity, and geographical concentration limit large-scale adoption. In addition, the discovery of non-Ir alternatives is slow due to the vast design space possible. Here, a "megalibrary" is used to explore the catalytic activity of ∼156 million distinct nanostructures comprised of Ru, Co, Mn, and Cr to find alternatives to Ir catalysts for OER.
View Article and Find Full Text PDFTaking inspiration from seed-mediated crystal growth in atomic and molecular systems, a strategy is developed for incorporating particle and volume defects into the interior of colloidal crystals consisting of programmable atom equivalents (PAEs, oligonucleotide-functionalized nanoparticles) assembled with DNA. Discrete PAEs spanning a range of shapes, sizes, and compositions serve as nucleation sites for seed-mediated colloidal crystal growth and are incorporated into the centers of colloidal crystal lattices as cavities. Importantly, seed PAE shapes or sizes that are geometrically mismatched with the colloidal crystal lattice symmetry introduce defects such as local lattice disorder and long-range grain boundaries that arise through geometric frustration.
View Article and Find Full Text PDFThe lack of structural definition in nanomedicines limits therapeutic efficacy and complicates regulatory approval. Here, we emphasize that defining, designing and optimizing the structures of nanomedicine are critical to developing effective therapies because their architectures - not just the identity of their components - determines potency.
View Article and Find Full Text PDFRecent developments in materials science have made it possible to synthesize millions of individual nanoparticles on a chip. However, many steps in the characterization process still require extensive human input. To address this challenge, we present an automated image processing pipeline that optimizes high-throughput nanoparticle characterization using intelligent image segmentation and coordinate generation.
View Article and Find Full Text PDFStructural nanomedicines are engineered constructs that arrange therapeutic components into well-defined architectures to maximize efficacy. Their multivalent, multifunctional design offers key advantages over unstructured formulations, including targeted delivery, expanded therapeutic windows, and enhanced target engagement. The mRNA COVID-19 vaccines exemplify their transformative potential.
View Article and Find Full Text PDFBiomacromolecules can serve as molecularly precise building blocks for hydrogel materials, dictating material properties that depend on the chemical identity and interactions of the individual components. Herein, we introduce biomolecular hydrogels where ligand-functionalized DNA sequences form the hydrogel backbone and multivalent protein-ligand interactions form supramolecular cross-links. In these hydrogels, we can independently leverage the programmable rigidity of DNA (i.
View Article and Find Full Text PDFProteins can template the heterogeneous nucleation and growth of size-confined nanocrystals. However, protein-templated mineralization often leads to particles that exhibit low colloidal stability, poor crystal quality, and/or diminished photoluminescence. Here, we report protein cage-spherical nucleic acids (SNAs) that can be used as nanoreactors for quantum dot (QD) synthesis and subsequent intracellular delivery.
View Article and Find Full Text PDFColloidal cocrystallization enables the formation of multicomponent materials with unique physicochemical properties, yet the role of nanoparticle (NP) shape and specific ligand interactions to cocrystallize anisotropic and isotropic NPs, with order and correlated disorder, remains underexplored. Here, geometry-inspired strategies along with programmable DNA interactions are combined to achieve structural control of colloidal cocrystal assemblies. Coassembling polyhedral and spherical NPs with complementary DNA yields two classes of cocrystals: one where both components order, and another where polyhedral NPs form a periodic lattice, while spherical NPs remain disordered but spatially correlated with polyhedral edges and corners.
View Article and Find Full Text PDFACS Nano
April 2025
Nanofabrication, a pivotal technology at the intersection of nanoscale engineering and high-resolution patterning, has substantially advanced over recent decades. This technology enables the creation of nanopatterns on substrates crucial for developing nanophotonic devices and other applications in diverse fields including electronics and biosciences. Here, this mega-review comprehensively explores various facets of nanofabrication focusing on its application in nanophotonics.
View Article and Find Full Text PDFPhase-separating nanoreactors, generated through either Dip Pen Nanolithography (DPN) or Polymer Pen Lithography (PPL) and capable of single nanoparticle formation, are compatible with almost every relevant element from the periodic table. This advance overcomes one of the most daunting limitations in high throughput materials discovery, specifically enabling the synthesis of broad swaths of the materials genome. Indeed, the platform is compatible with at least 52 metal elements of interest and almost an infinite number of combinations.
View Article and Find Full Text PDFEnvironmental transmission electron microscopy (E-TEM) enables direct observation of nanoscale chemical processes crucial for catalysis and materials design. However, the high-energy electron probe can dramatically alter reaction pathways through radiolysis, the dissociation of molecules under electron beam irradiation. While extensively studied in liquid-cell TEM, the impact of radiolysis in gas phase reactions remains unexplored.
View Article and Find Full Text PDFColloidal crystal engineering with DNA is a powerful way of generating a wide variety of crystals spanning over 90 different symmetries. However, in many cases, crystals with well-defined habits are difficult, if not impossible, to make, in part due to rapid crystal defect formation and propagation. This is especially true in the case of face-centered cubic (FCC) structures.
View Article and Find Full Text PDFHalide perovskites are used to fabricate energy-efficient optoelectronic devices. Determining which compositions yield desired chromatic responses is challenging, especially when doping strategies are used. Here, we report a way of mapping the compositional space of halide perovskites to generate a light emission or "chromaticity" palette.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
The use of proteins as intracellular probes and therapeutic tools is often limited by poor intracellular delivery. One approach to enabling intracellular protein delivery is to transform proteins into spherical nucleic acid (proSNA) nanoconstructs, with surfaces chemically modified with a dense shell of radially oriented DNA that can engage with cell-surface receptors that facilitate endocytosis. However, proteins often have a limited number of available reactive surface residues for DNA conjugation such that the extent of DNA loading and cellular uptake is restricted.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
The weak-link approach (WLA) to organometallic complexes offers a powerful method to create allosteric shape-shifting coordination complexes. However, chemically tuning the metal-ligand interactions entails challenging syntheses. This study explores the influence of ring strain on the lability of the platinum-sulfur interaction within WLA complexes, providing a simpler alternative to chemical modifications.
View Article and Find Full Text PDFIn nanomedicine, the cellular export of nanomaterials has been less explored than uptake. Traditionally viewed in a negative light, recent findings highlight the potential of nanomedicine export to enhance therapeutic effects. This Perspective examines key pathways for export and how nanomaterial design affects removal rates.
View Article and Find Full Text PDFThe i-motif is a pH-responsive cytosine-rich oligonucleotide sequence that forms, under acidic conditions, a quadruplex structure. This tunable structural switching has made the i-motif a useful platform for designing pH-responsive nanomaterials. Despite the widespread application of i-motif DNA constructs as biomolecular switches, the mechanism of i-motif folding on the atomic scale has yet to be established.
View Article and Find Full Text PDFIn nature, the interactions between proteins and their complements/substrates can dictate complex functions. Herein, we explore how DNA on nucleic acid modified proteins can be used as scaffolds to deliberately control interactions with a peptide complement (by adjusting length, sequence, and rigidity). As model systems, split GFPs were covalently connected through DNA scaffolds (36-58 bp).
View Article and Find Full Text PDFAdvances in electron microscopy have revolutionized material characterization on the nano- and microscales, providing important insights into local ordering, structure, and size and quality distributions. While shape and size can be rigorously quantified through microscopy, it is often limited to local structure analysis and fails to describe bulk sample quality. Herein, a flexible machine learning (ML) tool is described that can segment and classify faceted crystals in scanning electron microscopy (SEM) micrographs to determine sample quality through the crystal size and product distribution.
View Article and Find Full Text PDFImplantable sensors that can monitor analytes related to cognitive and physiological status have gained significant focus in recent years. We have developed an implantable biosensor to detect dehydroepiandrosterone sulfate (DHEA-S), a biomarker related to stress. The biosensor strategy was based on the principle of forced intercalation (FIT) aptamers designed to detect subtle intramolecular changes during aptamer-target binding events.
View Article and Find Full Text PDFWe report a strategy to accelerate the synthesis and increase the crystallinity of colloidal crystals (CCs) engineered with DNA. Specifically, by holding the DNA-modified Au particle building blocks above the of the DNA bonding elements (i.e.
View Article and Find Full Text PDFProgramming the organization of discrete building blocks into periodic and quasi-periodic arrays is challenging. Methods for organizing materials are particularly important at the nanoscale, where the time required for organization processes is practically manageable in experiments, and the resulting structures are of interest for applications spanning catalysis, optics, and plasmonics. While the assembly of isotropic nanoscale objects has been extensively studied and described by empirical design rules, recent synthetic advances have allowed anisotropy to be programmed into macroscopic assemblies made from nanoscale building blocks, opening new opportunities to engineer periodic materials and even quasicrystals with unnatural properties.
View Article and Find Full Text PDF