A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

High Temperature, Isothermal Growth Promotes Close Packing and Thermal Stability in DNA-Engineered Colloidal Crystals. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We report a strategy to accelerate the synthesis and increase the crystallinity of colloidal crystals (CCs) engineered with DNA. Specifically, by holding the DNA-modified Au particle building blocks above the of the DNA bonding elements (i.e., free from the particles), but slightly below the of the anticipated CC during the assembly process, crystallinity is increased, and enthalpically favored phases with high degrees of facet registration are observed. We studied the utility of this approach with systems for which the commonly adopted slow-cooling approach yielded primarily amorphous aggregates. In particular, we used it to synthesize high-volume fraction CCs from large (80 nm) anisotropic nanoparticles (cubes and rhombic dodecahedra) with short (<14 nm) DNA designed to restrict the degrees of freedom for the DNA bonds and maintain the anisotropy of the particle building block. Small-angle X-ray scattering and electron microscopy studies show that the crystalline phases synthesized via this method are more thermally stable than their corresponding aggregate phases, likely due to an increased number of DNA-DNA bonds between particles. Crystal size tunability (between 0.5 and 15 μm edge lengths) and epitaxial growth were demonstrated using this strategy by modulating the NaCl concentration in tandem with previously synthesized CC nuclei. Taken together, this isothermal strategy demonstrates how to deliberately crystallize a wide variety of anisotropic colloidal materials and expands the phase space accessible to nanoparticles modified with DNA.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.4c09308DOI Listing

Publication Analysis

Top Keywords

colloidal crystals
8
high temperature
4
temperature isothermal
4
isothermal growth
4
growth promotes
4
promotes close
4
close packing
4
packing thermal
4
thermal stability
4
stability dna-engineered
4

Similar Publications