Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Achieving uniform perovskite thin films via inkjet printing remains a significant challenge due to the pervasive coffee-ring effect. Here, we present a solute engineering strategy that incorporates shape-anisotropic perovskite nanorods into a single-solvent ink formulation, effectively suppressing coffee-ring formation and yielding ultraflat films with an average roughness (Ra) as low as 0.226 nm. The anisotropic nanorod morphology modulates solute transport and deposition dynamics while also promoting the formation of directionally aligned domains. As a proof of concept, we demonstrate the linearly polarized perovskite films (polarization ratio ρ = 0.3357) by inkjet printing and the corresponding prototype electroluminescent devices. Although demonstrated with perovskite nanocrystals, this shape-anisotropic solute strategy may be broadly applicable to other functional materials, offering a universal route to uniform film formation and device integration.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.5c12776DOI Listing

Publication Analysis

Top Keywords

perovskite films
8
solute strategy
8
inkjet printing
8
perovskite
5
coffee-ring suppression
4
suppression inkjet-printed
4
inkjet-printed perovskite
4
films
4
films enabled
4
enabled shape-anisotropic
4

Similar Publications

Helically ordered chiral super spaces enable optical chirality in hybrid organic-inorganic perovskite crystals.

J Colloid Interface Sci

September 2025

Department of Advanced Materials Engineering for Information & Electronics, Kyung Hee University, Gyeonggi-do 17104, Republic of Korea. Electronic address:

We present a supramolecular templating strategy for inducing chirality in hybrid perovskites via confined crystallization within chiral super spaces-nanoconfined, helically ordered cavities formed by the self-assembly of achiral bent-core molecules with chiral additives. Upon removal of the additives, the resulting porous films retain permanent chirality. Quasi-2D hybrid organic-inorganic perovskites crystallized within these templates exhibit distinct chiroptical activity, including mirror-image circular dichroism and circularly polarized light emitting (CPLE), with CPLE dissymmetry factors reaching up to 1.

View Article and Find Full Text PDF

Phase segregation remains one of the most critical challenges limiting the performance and long-term operational stability of wide-bandgap perovskite solar cells (PSCs). This issue is especially pronounced in 1.84 eV wide-bandgap (WBG) perovskites, where severe halide phase segregation leads to compositional heterogeneity and accelerated device degradation.

View Article and Find Full Text PDF

Achieving uniform perovskite thin films via inkjet printing remains a significant challenge due to the pervasive coffee-ring effect. Here, we present a solute engineering strategy that incorporates shape-anisotropic perovskite nanorods into a single-solvent ink formulation, effectively suppressing coffee-ring formation and yielding ultraflat films with an average roughness (Ra) as low as 0.226 nm.

View Article and Find Full Text PDF

Inorganic halide perovskites are promising light absorbers due to their thermal stability, high absorption, and tunable optoelectronic properties. CsPbIBr, with a suitable bandgap and robust phase stability, is particularly attractive for indoor photovoltaics (IPVs). However, achieving uniform, defect-minimized films remains challenging.

View Article and Find Full Text PDF

A new, readily accessible inorganic hole transporting material (HTM), Cu doped SnCoO (Cu-SCO), is developed for inverted tin-perovskite solar modules (TPSMs). To overcome the intrinsic defect of inorganic solid-state material Cu-SCO and potential interfacial incompatibility with TPsk, an amphiphilic neutral donor-acceptor copolymer (PTSN) is rationally designed as a surface/interface modification agent. TPSMs based on Cu doped SnCoO HTLs integrated with PTSN surface/interface modification achieved the highest conversion efficiency of 10.

View Article and Find Full Text PDF