Engineering Covalent and Noncovalent Interface Synergy in MXenes for Ultralong-life and Efficient Energy Storage.

Angew Chem Int Ed Engl

Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, P.R. China.

Published: September 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

MXenes serve as pivotal candidates for pseudocapacitive energy storage owing to sound proton/electron-transport capability and tunable topology. However, the metastable surface terminal properties and the progressive oxidation leads to drastic capacity fading, posing significant challenges for sustainable energy applications. Here, with the aramid nanofiber as the interface mediator, we engineer the thermal reconstruction of MXenes to synergistically introduce interfacial covalent and noncovalent interactions, resulting in a high specific capacitance of 531.9 F g and a capacity retention of 92.2% after 180, 000 cycles. In-situ heating transmission electron microscopy observations demonstrate the formation of ultrafine mesopores with interfacial reconstitution for mass transport intensification. Theoretical calculations indicate electronic accumulation adjacent to the covalent bonds, endowing the heterogeneous interface with fast electronic conduction capability and favorable adsorption of H. In addition, the dual modification improves the oxidation energy barrier of MXenes to TiO, resulting in a thermodynamically promoted and sustainable storage microenvironment. Our research emphasizes the synergistic mechanism of noncovalent interactions and covalent bonding toward an optimal reaction interface, which breaks the trade-off of MXenes between the reactivity and stability for energetic energy storage.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202513390DOI Listing

Publication Analysis

Top Keywords

energy storage
12
covalent noncovalent
8
noncovalent interactions
8
mxenes
5
energy
5
engineering covalent
4
interface
4
noncovalent interface
4
interface synergy
4
synergy mxenes
4

Similar Publications

Lithium metavanadate (LiVO) is a material of growing interest due to its monoclinic 2/ structure, which supports efficient lithium-ion diffusion through one-dimensional channels. This study presents a detailed structural, electrical, and dielectric characterization of LiVO synthesized a solid-state reaction, employing X-ray diffraction (XRD), scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS), and impedance/dielectric spectroscopy across a temperature range of 473-673 K and frequency range of 10 Hz to 1 MHz. XRD and Rietveld refinement confirmed high crystallinity and single-phase purity with lattice parameters = 10.

View Article and Find Full Text PDF

Flexible photonic contactless human-machine interface based on visible-blind near-infrared organic photodetectors.

Natl Sci Rev

September 2025

The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China.

Contactless human-machine interfaces (C-HMIs) are revolutionizing artificial intelligence (AI)-driven domains, yet face application limitations due to narrow sensing ranges, environmental fragility, and structural rigidity. To address these obstacles, we developed a flexible photonic C-HMI (Flex-PCI) using flexible visible-blind near-infrared organic photodetectors. In addition to its unprecedented performance across key metrics, including broad detection range (0.

View Article and Find Full Text PDF

Machine learning and artificial intelligence promise to accelerate research and understanding across many scientific disciplines. Harnessing the power of these techniques requires aggregating scientific data. In tandem, the importance of open data for reproducibility and scientific transparency is gaining recognition, and data are increasingly available through digital repositories.

View Article and Find Full Text PDF

Polymer-derived ceramics are a versatile class of multifunctional materials synthesized the high-temperature treatment of a preceramic polymer. In this work, we report the synthesis of a vanadium carbide-embedded carbonaceous hybrid by pyrolyzing a modified preceramic polymer incorporating vanadium acetylacetonate in a polysilsesquioxane followed by hydrofluoric acid etching. The structural and microscopic characterisation confirmed the uniform distribution of nanoparticulate vanadium carbide in the matrix.

View Article and Find Full Text PDF

Graphene/mesoporous carbon/ZIF-derived carbon heterostructures interface-reinforced assembly for capacitive energy storage.

Chem Commun (Camb)

September 2025

State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.

We report the synthesis of three-dimensional (3D) graphene/mesoporous carbon/ZIF-derived microporous carbon (G/MC/ZDC-A) heterostructures through an interface-reinforced assembly. This hierarchical architecture synergistically integrates 2D graphene nanosheets with 0D ZDC nanoparticles a mesoporous carbon "binder", effectively mitigating the agglomeration issue while establishing continuous charge transport pathways. When configurated as symmetric supercapacitors with EMIMBF electrolyte, the obtained G/MC/ZDC-A demonstrates decent capacitive performance: a high specific capacitance (240 F g at 0.

View Article and Find Full Text PDF