3,550 results match your criteria: "Hebei University of Technology[Affiliation]"

Higher chlorine dosage does not consistently enhance antibiotic resistance mitigation in the Cl-UV process.

Water Res

September 2025

Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China. Electronic address:

Health problems arising from antibiotic resistance are a global concern. The Cl-UV disinfection process has shown potential for controlling antibiotic resistance in water; however, the influence of disinfectant dosage on its effectiveness remains insufficiently understood. Can antibiotic resistance be controlled by simply increasing the disinfectant dosage? This study demonstrated that higher disinfectant levels improved antibiotic resistance gene (ARG) removal, with certain ARGs reaching 1.

View Article and Find Full Text PDF

Sub-2 nm platinum nanocluster decorated on yttrium hydroxide as highly active and robust self-supported electrocatalyst for industrial-current alkaline hydrogen evolution.

J Colloid Interface Sci

September 2025

State Key Laboratory of Bio-based Fiber Materials, College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, China. Electronic address:

Downsizing Pt particles and incorporating water dissociation site represents a promising strategy for maximizing atomic utilization efficiency and enhancing catalytic performance in Pt-based hydrogen evolution reaction (HER) electrocatalysts. Here, we present a self-supported Pt/Y(OH) electrocatalyst through a synergistic combination of anion insertion-enhanced electrodeposition and chemical deposition at ambient temperature. The resultant architecture features sub-2 nm Pt nanoclusters (with an average diameter of 1.

View Article and Find Full Text PDF

A Facile and Efficient Route to Achieve Polythiophene-Based Nanoparticles With Various Morphologies.

Angew Chem Int Ed Engl

September 2025

Key Laboratory of Hebei Province for Molecular Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300401, P.R. China.

Polythiophene-based nanoparticles (PTNPs), a prominent class of conjugated polymer nanoparticles (CPNs) with remarkable optical and electronic properties, have gained significant attention in applications such as electronics and bioimaging. However, current methods in generating PTNPs have run into obstacles including low variety of morphologies, poor reproducibility, and low preparation efficiency, restricting their further application. In this study, we report a facile and efficient fabrication strategy based on template synthesis method.

View Article and Find Full Text PDF

Tailoring interfacial stability and ion kinetics via weakly-solvated fluorinated solvents for high-performance lithium metal batteries.

J Colloid Interface Sci

September 2025

School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China; Hebei Engineering Research Center of Advanced Energy Storage Technology and Equipment, Hebei University of Technology, Tianjin 300401, China; State Key Laboratory of Reliability and Intelligence of

High-voltage lithium metal batteries (LMBs) have emerged as ideal candidates for achieving high-energy-density energy storage devices. Notably, high-reactive lithium metal and high-voltage transition metal oxide cathodes require electrolytes with superior electrochemical stability and interfacial compatibility. Herein, a solvent chemistry electrolyte design strategy is proposed that a weakly-solvated fluorinated bis(2,2,2-trifluoroethyl) carbonate (TFEC) was introduced into carbonate electrolyte for enhanced high voltage performance.

View Article and Find Full Text PDF

First observation of biochar aerosol generation from raindrop impact on biochar-amended soils.

J Hazard Mater

September 2025

Institute of Pollution Control and Environmental Health, and School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China. Electronic address:

This study presents the first experimental evidence of biochar (BC) aerosol generation via raindrop impact on amended soils, combining controlled rainfall simulations with year-long field monitoring of atmospheric particulates from a BC-treated plot (2.0 wt%). Microscopic and isotopic analyses confirmed BC incorporation in total suspended particles (TSP), accounting for 15.

View Article and Find Full Text PDF

Amino-Functionalized Lanthanide Metal-Organic Frameworks for Ratiometric Detection of Perfluorooctanoic Acid.

ACS Appl Mater Interfaces

September 2025

School of Chemical Engineering and Technology, Hebei University of Technology, XiPing Dao 5340, Beichen District, Tianjin 300401, P. R. China.

Perfluorooctanoic acid (PFOA) is a persistent organic pollutant with a global presence in water, air, and soil resources. Herein, a water-stable amine-functionalized lanthanide metal-organic framework () is utilized for ratiometric luminescence detection of PFOA. In the presence of PFOA, there is an increase in the emission intensity of the organic ligand, while the characteristic luminescence intensity of Eu ions decreases, accompanied by a distinct emission color change from red to blue.

View Article and Find Full Text PDF

We present the draft genome sequence of a petroleum-degrading bacterium DG-1. The genome size of strain DG-1 is 6,734,315 bp with a GC content of 66.07%, which contains 6,213 genes, including crude oil degradation, biosurfactant synthesis, and quorum sensing, providing valuable insights into the mechanisms of petroleum biodegradation.

View Article and Find Full Text PDF

Synergistic Microstructure and Thermal Regulation via Multifunctional Flame-Retardant Separator Design for High-Safety Lithium Metal Batteries.

ACS Appl Mater Interfaces

September 2025

Hebei Engineering Research Center of Advanced Energy Storage Technology and Equipment, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China.

Lithium metal batteries (LMBs) are expected to increase energy density due to the high capacity and low electrode potential of lithium metal. However, lithium dendrite growth and organic liquid electrolytes exacerbate the risk of thermal runaway. To improve the safety of the battery, a multifunctional flame-retardant separator was developed through the synergistic effect of decabromodiphenyl ethane (DBDPE)/AlO nanoparticle composite modification.

View Article and Find Full Text PDF

Hydrogels hold great promises in intelligent wearable gesture-to-recognition translation devices, but high mechanical robustness usually encounters low sensitivity and poor cycling stability, it is pivotal and challenging to balance energy dissipation and conductivity. Herein, the soft-hard multiphase hydrogels have been proposed for the first time through noncovalently threading polymerizable deep eutectic solvent (PDES) into hydrogen-bonded organic frameworks (HOFs). Fluorine groups on HOF (HOF-F) are presented as the hydrogen bond acceptors to form multiple noncovalent interactions between HOF-F and PDES, which expedites the energy dissipation with synchronous increment of ion transport in hydrogels.

View Article and Find Full Text PDF

Heterogeneous ice nucleation, triggered by surfaces, profoundly impacts climate systems, biological processes, and technological applications. Classical nucleation theory (CNT) predicts that with curvature radii decreasing within 1 order of magnitude of the critical nucleus radius, convex surfaces should suppress nucleation and concave surfaces should promote nucleation; however, such regularity has not been observed explicitly in experiments, and there are even conflicting results. Here, we resolve this long-standing controversy by providing the first experimental evidence about the bidirectional regulation of ice nucleation from both liquid and vapor phases through precisely engineered convex (nanosphere) and concave (nanopore) surfaces.

View Article and Find Full Text PDF

The findings of this study offer valuable insights for the development of targeted rehabilitation strategies. Understanding the specific cognitive and behavioural patterns identified can help clinicians tailor interventions that address underlying mechanisms rather than only symptoms. For example, integrating adaptive training programs that focus on enhancing self-regulation and social cognition may improve patient outcomes.

View Article and Find Full Text PDF

[Research progress on combined transcranial electromagnetic stimulation in clinical application in brain diseases].

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi

August 2025

State Key Laboratory of Intelligent Power Distribution Equipment and System, School of Electrical Engineering, Hebei University of Technology, Tianjin 300130, P. R. China.

In recent years, the ongoing development of transcranial electrical stimulation (TES) and transcranial magnetic stimulation (TMS) has demonstrated significant potential in the treatment and rehabilitation of various brain diseases. In particular, the combined application of TES and TMS has shown considerable clinical value due to their potential synergistic effects. This paper first systematically reviews the mechanisms underlying TES and TMS, highlighting their respective advantages and limitations.

View Article and Find Full Text PDF

[Effect of 40 Hz pulsed magnetic field on mitochondrial dynamics and heart rate variability in dementia mice].

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi

August 2025

School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300130, P. R. China.

Alzheimer's disease (AD) is the most common degenerative disease of the nervous system. Studies have found that the 40 Hz pulsed magnetic field has the effect of improving cognitive ability in AD, but the mechanism of action is not clear. In this study, APP/PS1 double transgenic AD model mice were used as the research object, the water maze was used to group dementia, and 40 Hz/10 mT pulsed magnetic field stimulation was applied to AD model mice with different degrees of dementia.

View Article and Find Full Text PDF

To address the escalating industrial demands for high-performance polymers with both superior strength and toughness, a unique boronic acid imine cage (BIC) compound containing a Schiff-base structure is innovatively synthesized and covalently incorporated into the molecular chains of waterborne polyurethanes to obtain the elastomers (DWPU-BIC-x) with outstanding strength, toughness, tear resistance, and fatigue resistance. In-depth mechanism analysis reveals that BIC functions as a "structural hub", leveraging its rigid cage-like geometry and high-density interaction sites (aromatic rings for π-π stacking and nitrogen atoms for hydrogen bonding) to modulate molecular chain movement and intermolecular forces, thereby facilitating efficient energy dissipation under mechanical stress. The optimized material achieves an outstanding strength (53.

View Article and Find Full Text PDF

The electrochemical catalytic nitrate reduction reaction (NORR) has been emerging as a significant supplement for industrial NH synthesis. While the catalysts are still facing the challenges of low yield, strong hydrogen evolution reaction (HER), and are unable to adapt to the change of nitrate concentration in industrial wastewater. A heterojunction is a junction structure formed through atomic-level interfacial coupling between two or more semiconductor materials (or between a semiconductor and a metal/insulator) with different crystal structures or band structures.

View Article and Find Full Text PDF

The electric power equipment industry is rapidly advancing toward "informationization," with the swift progression of intelligent sensing technology serving as a key driving force behind this transformation, thereby triggering significant changes in global electric power equipment. In this process, intelligent sensing has created an urgent demand for high-performance integrated power systems that feature compact size, lightweight design, long operational life, high reliability, high energy density, and low cost. However, the performance metrics of traditional power supplies have increasingly failed to meet the requirements of modern intelligent sensing, thereby significantly hindering the advancement of intelligent power equipment.

View Article and Find Full Text PDF

Cross-modal remote sensing object detection holds significant potential for around-the-clock applications. However, the modality differences between cross-modal data and the degradation of feature quality under adverse weather conditions limit detection performance. To address these challenges, this paper presents a novel cross-modal remote sensing object detection framework designed to overcome two critical challenges in around-the-clock applications: (1) significant modality disparities between visible light, infrared, and synthetic aperture radar data, and (2) severe feature degradation under adverse weather conditions including fog, and nighttime scenarios.

View Article and Find Full Text PDF

Co-combustion is regarded as an effective means for high-efficiency utilization of low-quality fuels. However, low-quality fuel has problems such as low energy density and high water content. The fuel quality and blending performance can be further optimized by the pretreatment of low-quality fuel, for example, calorific value, hydrophobicity, and NO conversion rate.

View Article and Find Full Text PDF

Precise odor source localization in turbulent and sparse environments plays a vital role in enabling robotic systems for hazardous chemical monitoring and effective disaster response. To address this, we propose Cooperative Gravitational-Rényi Infotaxis (CGRInfotaxis), a distributed decision-optimization framework that combines multi-agent collaboration with hybrid cognitive strategy to improve search efficiency and robustness. The method integrates a gravitational potential field for rapid source convergence and Rényi divergence-based probabilistic exploration to handle sparse detections, dynamically balanced via a regulation factor.

View Article and Find Full Text PDF

The utility of nanostructured TiO in the degradation of organic compounds and the disinfection of pathogenic microorganisms represents an important endeavor in photocatalysis. However, the low photocatalytic efficiency of TiO remains challenging. Herein, we report a robust photocatalytic route to benzene removal rendered by enhancing its adsorption capacity via rationally designed mesoporous SiO-coated TiO colloids.

View Article and Find Full Text PDF

Compared with biocompatibility, osteoconductivity, and mechanical properties, the poor injectability of calcium phosphate bone cements (CPCs) is always ignored, which actually hinders the development of CPC clinical transfer in minimally invasive orthopedic surgeries. Moreover, currently, CPC preparation in the clinic is labor-intensive and requires well-trained technicists, which might also result in the unstable quality of CPCs. In this work, we focused on three research objectives: (i) introducing a standardized preparation method for CPCs; (ii) studying the effects of preparation parameters on CPC injectability and compressive strength; and (iii) studying the injecting condition effects on CPC injectability, aiming to overcome CPCs' disadvantages in minimally invasive surgeries.

View Article and Find Full Text PDF

Background: Polyhydroxybutyrate (PHB) production from food waste by photosynthetic bacteria (PSB) face the bottleneck of low production efficiency. Metal ions have the potential to enhance the PHB production by PSB. Thus, for the first time, this study explored the effect of Fe and Mn on the enhancement of PHB production from kitchen waste digestate by PSB and their enhancement mechanism.

View Article and Find Full Text PDF

Challenges in Dielectric Elastomer Artificial Muscles: Paving the Way for Real-World Soft-Robot Applications.

Small

August 2025

State Key Laboratory for Reliability and Intelligence of Electrical Equipment, Engineering Research Center of Ministry of Education for Intelligent Rehabilitation Device and Detection Technology, Hebei Key Laboratory of Smart Sensing and Human-Robot Interaction, School of Mechanical Engineering, Heb

Dielectric elastomer actuators (DEAs) have emerged as leading candidates for artificial muscles in high-performance soft robotics, simultaneously offering large reversible deformations, excellent mechanical compliance, a fast response, and a high energy density. These features make them ideal for broad applications that require versatile adaptability, lightweight construction, and safe human-machine interactions. Despite their potential, their practical implementation remains hindered by several interrelated challenges, including high driving voltages, poor electromechanical stability, limited power density, and inadequate cycling durability.

View Article and Find Full Text PDF

Volcano-Shaped Relationship Between Interfacial K-HO Ratio and CO Reduction Activity in Tandem Electrocatalysts.

Angew Chem Int Ed Engl

August 2025

National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, P.R. China.

Modulating surface-active hydrogen (*H) supply represents a critical strategy to boost the electrocatalytic CO reduction reaction (ECRR), yet the mechanistic interplay between *H dynamics and catalytic behavior remains ambiguous. Herein, we construct tandem catalysts (M/NiNC, M = Fe, Co, Cu, or Mn) by coupling tetranuclear metal clusters (M) with single-atom Ni sites on N-doped carbon (NiNC) to regulate *H supply. Experimental and theoretical results reveal that the *H supply is governed by both thermodynamics and kinetic factors.

View Article and Find Full Text PDF

Visible-Light-Activated Multi-Color Tunable Time-Dependent Afterglow Triggered by Variable Conjugation Effects via the Transformation of Matrix.

Adv Sci (Weinh)

August 2025

Tianjin Key Laboratory of Chemical Process Safety, Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300401, P. R. China.

Achieving multi-color tunable time-dependent afterglow color (TDAC) in pure organic materials under visible light excitation remains a significant challenge. Herein, TDAC composites (CDs/U) are prepared with multi-color tunability upon visible-light excitation. Furthermore, the TDAC mechanism is the coexistence of shorter-lived afterglow and longer-lived afterglow.

View Article and Find Full Text PDF