Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The electric power equipment industry is rapidly advancing toward "informationization," with the swift progression of intelligent sensing technology serving as a key driving force behind this transformation, thereby triggering significant changes in global electric power equipment. In this process, intelligent sensing has created an urgent demand for high-performance integrated power systems that feature compact size, lightweight design, long operational life, high reliability, high energy density, and low cost. However, the performance metrics of traditional power supplies have increasingly failed to meet the requirements of modern intelligent sensing, thereby significantly hindering the advancement of intelligent power equipment. Energy harvesting technology, characterized by its long operational lifespan, compact size, environmental sustainability, and self-sufficient operation, is capable of capturing renewable energy from ambient power sources and converting it into electrical energy to supply power to sensors. Due to these advantages, it has garnered significant attention in the field of power sensing. This paper presents a comprehensive review of the current state of development of energy harvesting technologies within the power environment. It outlines recent advancements in magnetic field energy harvesting, electric field energy harvesting, vibration energy harvesting, wind energy harvesting, and solar energy harvesting. Furthermore, it explores the integration of multiple physical mechanisms and hybrid energy sources aimed at enhancing self-powered applications in this domain. A comparative analysis of the advantages and limitations associated with each technology is also provided. Additionally, the paper discusses potential future directions for the development of energy harvesting technologies in the power environment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12388669 | PMC |
http://dx.doi.org/10.3390/mi16080964 | DOI Listing |