Halide perovskite nanomaterials have emerged as a transformative platform for generating and manipulating polarized luminescence, offering unprecedented opportunities for next-generation optoelectronic technologies. This review comprehensively examines recent advances in engineering both linearly polarized luminescence (LPL) and circularly polarized luminescence (CPL) from perovskite nanostructures, focusing on structural design principles, chirality transfer mechanisms, and performance optimization strategies. Methods are systematically analyzed to achieve polarized emission, including anisotropic nanocrystal growth, chiral ligand functionalization, and liquid crystal-mediated alignment, while highlighting critical optical factors such as dissymmetry factors and photoluminescence quantum yield.
View Article and Find Full Text PDFISME Commun
January 2025
Eukaryotic harmful and toxic microalgae, along with their derived toxins, pose significant threats to seafood safety, human health, and marine ecosystems. Here, we developed a novel full-length 18S rRNA database for harmful and toxic microalgae and combined metabarcoding with toxin analyses to investigate the ecological patterns of phytoplankton communities and the underlying mechanism of associated toxic microalgae risks. We identified 79 harmful and toxic species in Hong Kong's coastal waters, with dinoflagellates and diatoms representing the majority of toxic and harmful taxa, respectively.
View Article and Find Full Text PDFVictoria Harbour, located at the centre of densely populated Hong Kong, has historically suffered from significant marine pollution. In response, the Harbour Area Treatment Scheme was fully implemented by the end of 2015, effectively treating over 2 million tonnes of sewage daily from two sides of the harbour and substantially improving water quality. This study investigated coral communities in seven sites along the natural coastline and five sites along the artificial breakwater in Victoria Harbour.
View Article and Find Full Text PDFACS Nano
August 2025
Elevated intestinal inflammation, reactive oxygen species (ROS), and gut microbiota dysbiosis are prominent features of various intestinal disorders. In this work, we develop an oral inulin-based hydrogel delivery system (LICH) containing living probiotics and hyaluronic acid (HA)-modified carbon dot (CD) nanoenzymes to orchestrate gut disorders. Utilizing the hydrophobic properties of HA under acidic conditions, LICH contracts its network to safeguard probiotics during gastric transit.
View Article and Find Full Text PDFBackground: Pancreatic ductal adenocarcinoma (PDAC) is among the deadliest malignancies worldwide. Ubiquitination is a biological process that regulates the degradation of proteins. Previous studies have indicated that ubiquitin ligase E3C (UBE3C) has procarcinogenic properties in various tumours.
View Article and Find Full Text PDFShell coating is known to suppress luminescence quenching in spherical upconversion nanoparticles. However, the emergence of anisotropic nanoparticles with facet-selective, directional growth complicates the coating process, and the use of traditional active, inert, or polymer coatings on such structures remains largely unexplored. Here, we synthesize a series of nanorods with designed geometries, enabling quantitative spectral analysis at the single-particle level.
View Article and Find Full Text PDFJ Nanobiotechnology
March 2025
Elevated copper levels induce tumor cuproptosis and ferroptosis, leading to immunogenic cell death and subsequent antitumor immune responses. However, dysregulated copper metabolism in tumor cells maintains homeostatic copper balance, while hypoxic microenvironments hinder therapeutic efficacy. In this study, we present a nanozyme system, termed CussOMEp, comprising a copper-based nanovector (CussNV) that is PEGylated and loaded with omeprazole, a copper transporter inhibitor, to enhance tumor synergistic immunotherapy by promoting cuproptosis and ferroptosis.
View Article and Find Full Text PDFA right-side-out orientated self-assembly of cell membrane-camouflaged theranostic nanoplatform is crucial for ensuring their biological functionality inherited from the source cells. However, the low specificity and fluorescence background interference hampered reliable assessment of lipids content in plaques. In this work, a spontaneous right-side-out coupling-driven ROS-responsive theranostic nanoplatform has been developed to enhance accumulation within atherosclerotic plaques, target lipids imaging in plaques, reduce the interference from background fluorescence and inhibit the progression of atherosclerosis (AS).
View Article and Find Full Text PDFAdv Mater
March 2025
Halide perovskites (HPs), emerging as a noteworthy class of semiconductors, hold great promise for an array of optoelectronic applications, including anti-counterfeiting, light-emitting diodes (LEDs), solar cells (SCs), and photodetectors, primarily due to their large absorption cross section, high fluorescence efficiency, tunable emission spectrum within the visible region, and high tolerance for lattice defects, as well as their adaptability for solution-based fabrication processes. Unlike luminescent HPs with band-edge emission, trivalent rare-earth (RE) ions typically emit low-energy light through intra-4f optical transitions, characterized by narrow emission spectra and long emission lifetimes. When fused, the cooperative interactions between HPs and REs endow the resulting binary composites not only with optoelectronic properties inherited from their parent materials but also introduce new attributes unattainable by either component alone.
View Article and Find Full Text PDFBackground: Preoperative neoadjuvant chemoradiotherapy (nCRT) is considered to be the standard treatment strategy for locally advanced rectal cancer (LARC); however, the risk of adverse events and postoperative recurrence remains significant. This study aimed to evaluate the non-inferiority of neoadjuvant chemotherapy (nCT) compared with nCRT in patients with LARC and to assess the possibility of eliminating radiotherapy on the basis of guaranteed efficacy.
Materials And Methods: We searched the PubMed, Embase, and Cochrane Library databases to identify randomized controlled trials (RCTs) comparing the efficacy of nCRT and nCT for LARC.
Environ Int
January 2025
Despite the ubiquity and complexity of atmospheric polycyclic aromatic compounds (PACs), many of these compounds are largely unknown and lack sufficient toxicity data for comprehensive risk assessments. In this study, nontarget screening assisted by in-house and self-developed spectra databases was, therefore, employed to identify PACs in atmospheric particulate matter collected from multiple outdoor settings. Additionally, absorption, distribution, metabolism, excretion, and toxicity properties were evaluated to indicate PAC's overall abilities to cause adverse outcomes and incorporated into a novel health risk assessment model to assess their inhalation risks.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Osteoporosis is the most common systemic skeletal disorder, particularly associated with aging and postmenopausal women. With the growing knowledge about the gut-bone axis, the therapeutic strategies for osteoporosis have been shifted toward regulating gut microbiota to promote positive bone metabolism. Although GG (LGG) is widely reported to positively regulate bone metabolism by restoring the dysbiotic microbiome, oral administration is associated with sensitivity to gastric fluid and low bioavailability.
View Article and Find Full Text PDFTheranostic applications in atherosclerosis plaque microenvironment-triggered nanoplatforms are significantly compromised by the complex synthesis procedure, non-specific distribution, and limited therapeutic function. Therefore, development of a facile and feasible method to construct a pathology-based stimuli-responsive nanoplatform with satisfactory theranostic performance remains a demanding and highly anticipated goal. Herein, a novel class of multifunctional supra-carbon dots (CDs), denoted as MM@Ce-CDs NPs, by a simple nanoassembly and a subsequent coating with macrophage membrane (MM), is developed for the targeted reactive oxygen species-trigged theranostic and positive regulation of the pathological plaque microenvironment in AS.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2024
ACS Appl Mater Interfaces
September 2024
Precise monitoring of biomolecular radiation damage is crucial for understanding X-ray-induced cell injury and improving the accuracy of clinical radiotherapy. We present the design and performance of lanthanide-DNA-origami nanodosimeters for directly visualizing radiation damage at the single-particle level. Lanthanide ions (Tb or Eu) coordinated with DNA origami nanosensors enhance the sensitivity of X-ray irradiation.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2024
Atherosclerosis (AS) is characterized by the accumulation of lipids within the walls of coronary arteries, leading to arterial narrowing and hardening. It serves as the primary etiology and pathological basis for cardiovascular diseases affecting the heart and brain. However, conventional pharmacotherapy is constrained by inadequate drug delivery and pronounced toxic side effects.
View Article and Find Full Text PDFComp Biochem Physiol Part D Genomics Proteomics
December 2024
Gills and gut are the two primary osmoregulatory organs in fish. Recently, studies have expanded beyond the osmoregulatory mechanisms of these organs to explore the microbiota communities inhabiting them. It is now known that microbial communities in both organs shift in response to osmotic stress.
View Article and Find Full Text PDFACS Appl Mater Interfaces
June 2024
Atherosclerotic plaques exhibit high cholesterol deposition and oxidative stress resulting from high reactive oxygen species (ROS). These are the major components in plaques and the main pro-inflammatory factor. Therefore, it is crucial to develop an effective therapeutic strategy that can simultaneously address the multiple pro-inflammatory factors removing cholesterol and inhibiting the overaccumulated ROS.
View Article and Find Full Text PDFPurpose: , a dual-purpose food and medicine, displays limited efficacy in alcohol detoxification and liver protection, with previous research primarily focused on puerarin in its dried roots. In this study, we investigated the potential effects and mechanisms of fresh root-derived exosome-like nanovesicles (P-ELNs) for mitigating alcoholic intoxication, promoting alcohol metabolism effects and protecting the liver in C57BL/6J mice.
Methods: We isolated P-ELNs from fresh root using differential centrifugation and characterized them via transmission electron microscopy, nanoscale particle sizing, ζ potential analysis, and biochemical assays.
A right-side-out orientated self-assembly of cell membrane-camouflaged nanotherapeutics is crucial for ensuring their biological functionality inherited from the source cells. In this study, a universal and spontaneous right-side-out coupling-driven ROS-responsive nanotherapeutic approach, based on the intrinsic affinity between phosphatidylserine (PS) on the inner leaflet and PS-targeted peptide modified nanoparticles, has been developed to target foam cells in atherosclerotic plaques. Considering the increased osteopontin (OPN) secretion from foam cells in plaques, a bioengineered cell membrane (OEM) with an overexpression of integrin α9β1 is integrated with ROS-cleavable prodrugs, OEM-coated ETBNPs (OEM-ETBNPs), to enhance targeted drug delivery and on-demand drug release in the local lesion of atherosclerosis.
View Article and Find Full Text PDFEnviron Sci Technol
June 2024
Tropical small island developing states (SIDS), with their geographical isolation and limited resources, heavily rely on the fisheries industry for food and revenue. The presence of marine lipophilic phycotoxins (MLPs) poses risks to their economy and human health. To understand the contamination status and potential risks, the Republic of Kiribati was selected as the representative tropical SIDS and 55 species of 256 coral reef fish encompassing multiple trophic levels and feeding strategies were collected to analyze 17 typical MLPs.
View Article and Find Full Text PDFMiRNAs in mesenchymal stem cells (MSCs)-derived exosome (MSCs-exo) play an important role in the treatment of sepsis. We explored the mechanism through which MSCs-exo influences cognitive impairment in sepsis-associated encephalopathy (SAE). Here, we show that miR-140-3p targeted Hmgb1.
View Article and Find Full Text PDFAtherosclerosis (AS), a pathological cause of cardiovascular disease, results from endothelial injury, local progressive inflammation, and excessive lipid accumulation. AS plaques rich in foam cells are prone to rupture and form thrombus, which can cause life-threatening complications. Therefore, the assessment of atherosclerotic plaque vulnerability and early intervention are crucial in reducing the mortality rates associated with cardiovascular disease.
View Article and Find Full Text PDFAtherosclerosis (AS) management typically relies on therapeutic drug interventions, but these strategies typically have drawbacks, including poor site specificity, high systemic intake, and undesired side effects. The field of cell membrane camouflaged biomimetic nanomedicine offers the potential to address these challenges thanks to its ability to mimic the natural properties of cell membranes that enable enhanced biocompatibility, prolonged blood circulation, targeted drug delivery, and evasion of immune recognition, ultimately leading to improved therapeutic outcomes and reduced side effects. In this study, a novel biomimetic approach is developed to construct the M1 macrophage membrane-coated nanoprodrug (MM@CD-PBA-RVT) for AS management.
View Article and Find Full Text PDF