Publications by authors named "Delbert Almerick T Boncan"

Gills and gut are the two primary osmoregulatory organs in fish. Recently, studies have expanded beyond the osmoregulatory mechanisms of these organs to explore the microbiota communities inhabiting them. It is now known that microbial communities in both organs shift in response to osmotic stress.

View Article and Find Full Text PDF

Structural variations (SVs) are commonly found in cancer genomes. They can cause gene amplification, deletion and fusion, among other functional consequences. With an average read length of hundreds of kilobases, nano-channel-based optical DNA mapping is powerful in detecting large SVs.

View Article and Find Full Text PDF

Non-alcoholic fatty liver disease (NAFLD) has emerged as the most prevalent chronic liver disease worldwide, yet detection has remained largely based on surrogate serum biomarkers, elastography or biopsy. In this study, we used a total of 2959 participants from the UK biobank cohort and established the association of dual-energy X-ray absorptiometry (DXA)-derived body composition parameters and leveraged machine learning models to predict NAFLD. Hepatic steatosis reference was based on MRI-PDFF which has been extensively validated previously.

View Article and Find Full Text PDF

Perfluorohexanesulfonic acid (PFHxS) is a short-chain perfluoroalkyl substance widely used to replace the banned perfluorooctanesulfonic acid (PFOS) in various industrial and household products. It can be found in the environment and human bodies; however, its potential toxicities are not well studied. Zebrafish have been extensively used as a model for studying toxicants, and currently, two studies have reported on the toxicity of PFHxS in zebrafish from different approaches.

View Article and Find Full Text PDF

The fish gill is the first tissue that is exposed to the external media and undergoes continuous osmotic challenges. Recently, our group published an article entitled "Integrated Omics Approaches Revealed the Osmotic Stress-Responsive Genes and Microbiota in Gill of Marine Medaka" in the journal mSystems (e0004722, 2022), and suggested the possible host-bacterium interaction in the fish gill during osmotic stress. The previous study was performed by the progressive fresh water transfer (i.

View Article and Find Full Text PDF

Hypoxia is a potent endocrine disruptor that is posing serious problems to the fish reproductive systems. Our previous studies reported that hypoxia could cause a transgenerational impairment of ovarian development and interfere hatching success in F2 offspring of marine medaka fish (Oryzias melastigma) through epigenetic regulation. As part of the epigenetic regulation, we investigated the involvement of microRNAs (miRNAs) in hypoxia-induced transgenerational reproductive impairments.

View Article and Find Full Text PDF
Article Synopsis
  • A study looked at how exposure to a chemical called PFOS during pregnancy affects baby animals' health and gut bacteria.
  • Babies exposed to high levels of PFOS were lighter at first but grew faster later, while also having changes in their liver and fat storage.
  • When these babies became adults, those who had PFOS exposure struggled to handle high-fat diets and had less of some important nutrients in their gut bacteria.
View Article and Find Full Text PDF

Aquatic fishes face osmotic stress continuously, and the gill is the first tissue that senses and responds to the external osmotic challenges. However, the understandings of how the gill microbiota could respond to osmotic stress and their potential host-bacterium relationships are limited. The objectives of the current study are to identify the hypotonic responsive genes in the gill cells and profile the gill microbiota communities after fresh water transfer experiment via transcriptome sequencing and 16S rRNA gene sequencing.

View Article and Find Full Text PDF

The interactions of plants with environment and insects are bi-directional and dynamic. Consequently, a myriad of mechanisms has evolved to engage organisms in different types of interactions. These interactions can be mediated by allelochemicals known as volatile organic compounds (VOCs) which include volatile terpenes (VTs).

View Article and Find Full Text PDF

Carbohydrate-active enzymes (CAZymes) have significant biotechnological potential as agents for degradation or modification of polysaccharides/glycans. As marine macroalgae are known to be rich in various types of polysaccharides, seaweed-associated bacteria are likely to be a good source of these CAZymes. A genomics approach can be used to explore CAZyme abundance and diversity, but it can also provide deep insights into the biology of CAZyme producers and, in particular, into molecular mechanisms that mediate their interaction with their hosts.

View Article and Find Full Text PDF