98%
921
2 minutes
20
Elevated copper levels induce tumor cuproptosis and ferroptosis, leading to immunogenic cell death and subsequent antitumor immune responses. However, dysregulated copper metabolism in tumor cells maintains homeostatic copper balance, while hypoxic microenvironments hinder therapeutic efficacy. In this study, we present a nanozyme system, termed CussOMEp, comprising a copper-based nanovector (CussNV) that is PEGylated and loaded with omeprazole, a copper transporter inhibitor, to enhance tumor synergistic immunotherapy by promoting cuproptosis and ferroptosis. CussNV is assembled from dithiodiglycolic acid and copper ions, exhibiting peroxidase, glutathione oxidase, and catalase-like activities, along with responsive degradability. This nanozyme alleviates tumor hypoxia by producing oxygen, induces ferroptosis through the generation of lethal hydroxyl radicals, and depletes glutathione. Additionally, omeprazole increases cellular copper concentration and oxidative stress by inhibiting the intracellular copper-transporting ATPase 1 (ATP7A), enhancing lipoylated protein oligomerization and cuproptosis. In a breast tumor mouse model, CussOMEp elicits robust antitumor immune responses, including dendritic cell maturation and T cell proliferation. When combined with PD-1 antibodies (αPD-1), CussOMEp significantly inhibits tumor metastasis in bilateral and lung metastatic models. This work presents a functional nanozyme system as a promising strategy for synergistic tumor immunotherapy leveraging ferroptosis and cuproptosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11909888 | PMC |
http://dx.doi.org/10.1186/s12951-025-03284-3 | DOI Listing |
Anal Chim Acta
November 2025
School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China; Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, Hefei, 230009, China; Intelligent Interconnected Systems Laboratory of A
Background: Copper is a vital trace element that plays a crucial role in various physiological processes due to its ability to exist in multiple oxidation states. Inspired by natural enzymes, researchers have developed copper-based nanozymes that mimic enzyme functions, offering cost-effective and stable alternatives to traditional enzymes. Despite their promising properties, the design and synthesis of these nanozymes can be complex and challenging.
View Article and Find Full Text PDFAnal Chim Acta
November 2025
State Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Detection of Veterinary Drug Residues and Illegal Additives of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China. Electronic address: haiyang
Background: Aflatoxin B1 (AFB1) stands among the most toxic naturally occurring substances, with its acute toxicity characterized by the induction of acute hepatic necrosis, hemorrhage, and even fatal outcomes, thereby posing a profound threat to human health. Contamination of AFB1 in food commodities can arise at multiple stages throughout the production cycle, including cultivation, storage, and processing. This contamination cascade permeates the entire food supply chain, encompassing primary agricultural products as well as a diverse range of processed food items.
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2025
School of Materials Science and Engineering, Beijing Institute of Technology, 100081 Beijing, China. Electronic address:
Nanozymes are nanomaterials designed to mimic the catalytic functions of natural enzymes, offering advantages such as enhanced stability, tunability, and scalability. Although precise control over the spatial arrangement of catalytic centers is essential for maximizing nanozyme activity, it remains a fundamental challenge in nanozyme design. Here, we present a supramolecular strategy to achieve molecular-level engineering of catalytic centers by grafting hemin onto monodisperse cellulose oligomers (MCOs).
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2025
The Radiology Department of Shanxi Provincial People' Hospital, Five Hospital of Shanxi Medical University, Taiyuan 030001, China. Electronic address:
Liver fibrosis, a pivotal pathological stage in the progression of chronic liver diseases to cirrhosis and hepatocellular carcinoma is characterized by liver sinusoidal endothelial cell (LSEC) capillarization, oxidative stress imbalance, and cell pyroptosis. Current clinical interventions show limited efficacy in reversing fibrosis, highlighting the urgent need for novel therapeutic strategies. In this study, we developed an L-arginine-loaded melanin-like nanozyme (L-Arg@MeNPs) that targets liver fibrosis through a triple-action mechanism: (1) sustained nitric oxiderelease from L-Arg restores LSEC fenestration, improving sinusoidal permeability; (2) the MeNPs exhibit catalase/superoxide dismutase-mimicking activity to scavenge reactive oxygen species, thereby blocking the NOD-like receptor pyrin domain-containing 3/caspase-1-mediated pyroptosis pathway; and (3) intrinsic photoacoustic/magnetic resonance dual-modal imaging enables real-time therapeutic monitoring.
View Article and Find Full Text PDFBiomater Adv
August 2025
Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India; Centre of Medical Device, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India. Electronic address:
Spinal cord injury presents a significant clinical challenge. There are limited treatment options, and the results of regeneration are often disappointing. Secondary injury processes, including oxidative stress and chronic inflammation, worsen nerve damage and slow recovery.
View Article and Find Full Text PDF