1,892 results match your criteria: "Shanghai Institute of Technology[Affiliation]"

Enhancement of the Thermostability of Esterase by Combinatorial Rational Design.

Molecules

December 2024

School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China.

The esterase EstSIT01 from can catalyze the asymmetric hydrolysis of -dimethyl ester to produce the crucial chiral intermediate (4, 5)-hemimethyl ester for -biotin synthesis. Despite its high yields and stereoselectivity, the low thermostability of EstSIT01 limits its practical application. Herein, two kinds of rational strategies were combined to enhance the thermostability of EstSIT01.

View Article and Find Full Text PDF

Under semi-open brewing conditions, traditional often suffers from unstable flavor quality, including occasional delayed bitterness. To address this issue, a yeast strain, SC-6, was screened for its ability to reduce delayed bitterness. The effects of SC-6 on the flavor and microbial composition of exhibiting high levels of delayed bitterness were also investigated.

View Article and Find Full Text PDF

Current status and strategies for controlling hexachlorobutadiene from multiple perspectives of emission, occurrence, and disposal.

Environ Res

March 2025

Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing

Hexachlorobutadiene (HCBD), as an emerging persistent organic pollutant, poses a pressing global environmental issue concerning its reduction and control. However, the lack of systematic studies on the sources and occurrence of HCBD hinders the development of effective disposal technologies. This study addresses HCBD prevention and treatment from multiple perspectives, including source emissions, environmental contamination distribution, and control technologies.

View Article and Find Full Text PDF

Background And Objective: Inferring large-scale brain networks from functional magnetic resonance imaging (fMRI) provides more detailed and richer connectivity information, which is critical for gaining insight into brain structure and function and for predicting clinical phenotypes. However, as the number of network nodes increases, most existing methods suffer from the following limitations: (1) Traditional shallow models often struggle to estimate large-scale brain networks. (2) Existing deep graph structure learning models rely on downstream tasks and labels.

View Article and Find Full Text PDF

A comprehensive screening method of oxidation systems based on reaction rate constant (k value) and emergy (Em value).

Sci Total Environ

January 2025

School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China; State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environment Sciences, Shanghai 200233, PR China. Electronic

Oxidation systems are diverse and widely used for the degradation of organic pollutants in water. Identifying suitable oxidation systems for certain organic pollutants is a common challenge in practical engineering. Simultaneous consideration of the oxidation selectivity and economy of different oxidation systems for organic pollutants can improve the accuracy of the screening process.

View Article and Find Full Text PDF

Carbon Defects as Highly Active Sites for Gold Detection and Recovery.

Angew Chem Int Ed Engl

January 2025

MOE Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Material, Shanghai Normal University, Shanghai, 200234, China.

The use of precious metals (PMs) in many areas, such as printed circuit boards, catalysts, and target drugs, is increasing due to their unique physical and chemical properties, but their recovery remains a great challenge in terms of zero-valent PMs as the final product. We report a highly hydrophilic carbon dot (CD) as a reductant (electron donor), in which the defects in CD served as efficient active sites for zero-valent PMs recovery with an electron-donating capacity of ~1.7 mmol g.

View Article and Find Full Text PDF

This study aims to explore the association between community-based social capital, namely clan identity and sense of community (SOC), and perceived neighbourhood walkability (PNW) in relation to depressive symptoms among rural older adults in urbanisation. A sample of 489 older adults in an urbanising county of Western China participated and moderated mediation analysis was utilised. PNW was negatively associated with depressive symptoms, and SOC mediated the focal association.

View Article and Find Full Text PDF

Petroleum hydrocarbon pollutants in soil are challenging to biodegrade, negatively impacting plant growth as well as the metabolic activity and community structure of soil microorganisms. Microorganisms immobilized by seed carriers can synergistically contribute to the remediation of petroleum hydrocarbon-contaminated soil. We prepared a rape seed carrier with immobilized microorganism by seed coating (with a mixture of diatomaceous earth and bentonite as fillers) and microbial immobilization.

View Article and Find Full Text PDF

Polydopamine-functionalized capsules: From design to applications.

J Control Release

February 2025

Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai 201418, China. Electronic address:

In recent years, polydopamine (PDA)-functionalized capsules have garnered significant interest from researchers in the field of materials, owing to its remarkable properties of adhesion, biocompatibility, photothermal conversion capabilities, chemical reactivity, and so on. At present, numerous studies have reported various structures and morphologies of PDA-functionalized capsules fabricated via diverse strategies, that have found applications across a broad spectrum of disciplines. However, there are few comprehensive and systematic reviews focusing on various preparation strategies of PDA-functionalized capsules with various structures.

View Article and Find Full Text PDF

Laminating a free-standing carbon electrode film onto perovskite film is a promising method for fabricating HTM (hole transport material)-free carbon electrode perovskite solar cells (c-PSCs), offering more flexibility by decoupling the processes of carbon electrode and perovskite layer formation. However, the power conversion efficiency (PCE) of laminated HTM-free c-PSCs (<16.5 %) remains lower compared to c-PSCs with printed carbon pastes (>20 %), primarily due to poor interfacial contact between the perovskite and carbon layers.

View Article and Find Full Text PDF

A review on recent advances in polymeric microneedle loading cells: Design strategies, fabrication technologies, transdermal application and challenges.

Int J Biol Macromol

March 2025

School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China. Electronic address:

Microneedle systems (MNs) loading living cells are a powerful platform to treat various previously incurable diseases in the era of precision medicine. Herein, an overview of recent advances in MN-based strategies for cell delivery is summarized, including material selection, design of morphological structures, and processing methods. We also systematically outlined the law of microstructural design relative to the structure-effective/function relationship in transdermal delivery or precision medicine and the design principles of cell microneedle (CMN).

View Article and Find Full Text PDF

The growing modern industry has promoted the development of gas sensors for environmental monitoring and safety checks. However, the traditional chemical resistance gas sensor still has some disadvantages such as high power consumption and limited detection, mainly due to the lack of charge transfer ability of sensing materials. In this paper, an ordered UV-activated gas sensor with mesoporous ZnO/TiO nanotube composite was prepared by precisely controlling the growth of ZnO on the inner wall of TiO nanotube.

View Article and Find Full Text PDF

Hydrogel-based nonwoven with persistent porosity for whole-stage hypertonic wound healing by regulating of water vaporization enthalpy.

Biomaterials

May 2025

State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China.

Moisture induced by wound exudate is crucial throughout the wound repair process. The dressing directly affects the absorption, permeation, and evaporation of the wound exudate. However, most dressings in clinical often result in excessive dryness or moisture of wound due to their monotonous structure and function, leading to ineffective thermodynamic control of evaporation enthalpy.

View Article and Find Full Text PDF

Intractable infected wound caused by drug-resistant bacteria remains a severe healthcare problem. Reactive oxygen species (ROS)-based nanocatalytic therapy (ROS-NT) is harnessed to combat drug-resistant bacterial infection. However, it can also cause immune imbalance and excessive inflammatory responses, postponing subsequent wound healing process.

View Article and Find Full Text PDF

The effect of thermal processing on the binding between methional and chelated-soluble pectin obtained from muskmelon was investigated. Particle size measurements demonstrated that the formed complex between methional and chelated-soluble pectin exhibited small sizes after thermal processing. Pyrene fluorescence analysis showed that the interaction between methional and pectin occurred in the hydrophilic region.

View Article and Find Full Text PDF

High salt concentrations pose a significant challenge to the efficiency of activated sludge (AS) in phenolic wastewater treatment. As a cellular osmoprotectant, proline (Pro) has the capacity to increase the salt tolerance of microbes in AS, hence improving the efficiency of phenolic wastewater degradation. Nevertheless, the precise mechanism behind this enhancement remains ambiguous.

View Article and Find Full Text PDF

Precise and continuous monitoring of blood pressure and cardiac function is of great importance for early diagnosis and timely treatment of cardiovascular diseases. The common tests rely on on-site diagnosis and bulky equipments, hindering early diagnosis. The emerging hydrogels have gained considerable attention in skin bioelectronics by virtue of the similarities to biological tissues and versatility in mechanical, electrical, and biofunctional engineering.

View Article and Find Full Text PDF

Dynamic and sustainable supramolecular biolubrication coatings through nanoarchitectonics with dynamic BN bonding.

J Colloid Interface Sci

April 2025

Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, 200041 Shanghai, China. Electronic address:

Biological lubricating materials play a crucial role in normal human activities due to their extremely low coefficients of friction (COFs). However, synthetic friction materials typically exhibit higher friction coefficients and wear rates compared to natural lubricating materials. To address this issue, we propose a novel lubrication strategy: reducing the friction coefficient of synthetic lubricating materials through supramolecular dynamic exchange.

View Article and Find Full Text PDF

The discovery and synthesis of new NLO materials in the ultraviolet (UV) region are crucial to developing laser technology. The chemical substitution strategy is an effective pathway to design potential UV or DUV NLO crystals. Herein, two new compounds, KNaCaY(BO) and KNaCaLu(BO), have been synthesized using KBO·4HO as the template.

View Article and Find Full Text PDF

Organic-inorganic hybrid ferroelectrics have attracted considerable attention due to their outstanding piezoelectricity, mechanical flexibility, and robust nonlinear optical properties. But the species with above room-temperature (RT) ferroelectricity, visible-light bandgap, and high photoelectric performance are still scarce. Herein, a novel organic-inorganic hybrid ferroelectric [CNH][SbI] has been synthesized hydrothermally and employed as a light-absorbing layer in organic-inorganic hybrid solar cells.

View Article and Find Full Text PDF

High-performance color-changing compounds, recognized as prominent smart materials, dynamically alter their color in response to external environmental stimuli. However, existing compounds exhibit limited responsiveness and color diversity, presenting challenges in the development of textiles responsive to multiple stimuli. This research introduces a novel design for dual-responsive color-changing microcapsules, employing a Pickering emulsion template method.

View Article and Find Full Text PDF

Polyanionic Electrolyte Ionization Desalination Empowers Continuous Solar Evaporation Performance.

Adv Mater

February 2025

School of Engineering, Institute for Multiscale Thermofluids, The University of Edinburgh, Edinburgh, Scotland, EH9 3FD, UK.

Solar evaporation contributes to sustainable and environmentally friendly production of fresh water from seawater and wastewater. However, poor salt resistance and high degree of corrosion of traditional evaporators in brine make their implementation in real applications scarce. To overcome such deficiency, a polyanionic electrolyte functionalization strategy empowering excellent uniform desalination performance over extended periods of time is exploited.

View Article and Find Full Text PDF

Changes in soluble sugars and the expression of sugar transporter protein genes in strawberry crowns responding to infection.

Physiol Mol Biol Plants

November 2024

Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences (SAAS), Jinqi Rd 1000#, Fengxian District, Shanghai, 201403 China.

Unlabelled: Strawberry ( × ) production has been greatly hampered by anthracnose crown rot caused by . Crown, the modified stem of strawberry, is a sink organ involved in sugar allocation. Some Sugar Transport Proteins (STPs) are involved in competition for sugars between pathogen and host.

View Article and Find Full Text PDF

A novel and efficient 1,2-oxidative trifluoromethylation of olefins employing Ag(OCCFSOF) as a trifluoromethyl source is described with O as the oxidant, which provides access to a variety of valuable α-trifluoromethyl-substituted ketones. The broad substrate scope, feasibility of large-scale operation, and derivatization reactions of α-trifluoromethyl ketones demonstrate the promising utility of this protocol.

View Article and Find Full Text PDF