477,099 results match your criteria: "PR China; Zhejiang Sci-Tech University Shengzhou Innovation Research Institute[Affiliation]"

Effect of knee joint position on soleus muscle function during isokinetic plantarflexion.

Physiol Int

September 2025

2Faculty of Sports Science, Ningbo University, No. 818 Fenghua Road, Jiangbei District, 315211, Ningbo City, Zhejiang Province, PR China.

Purpose: Contribution of the gastrocnemii muscles to ankle moment is influenced by the knee joint position because they span the knee and the ankle joint as well. However, limited information is available on the effect of knee joint position on soleus activation under dynamic plantarflexion, hence the aim of this study was to investigate if soleus have a compensatory strategy in fascicle behavior or EMG activity during knee flexed plantarflexion in order to reduce the magnitude of the decrement in ankle moment.

Equipment And Methods: Isokinetic dynamometry with EMG and ultrasound measurements was used to estimate medial gastrocnemius and soleus behavior during knee flexed and extended plantarflexions using three angular velocities.

View Article and Find Full Text PDF

Background: Lateral malleolar avulsion fracture (LMAF) and subfibular ossicle (SFO) are distinct entities that both present as small bone fragments near the lateral malleolus on imaging, yet require different treatment strategies. Clinical and radiological differentiation is challenging, which can impede timely and precise management. On imaging, magnetic resonance imaging (MRI) is the diagnostic gold standard for differentiating LMAF from SFO, whereas radiological differentiation on computed tomography (CT) alone is challenging in routine practice.

View Article and Find Full Text PDF

The antibiotic contamination in aquatic environments, particularly in aquaculture systems, poses substantial risks to ecological balance and human health. To address this issue, we engineered a novel ratiometric fluorescent probe utilizing dual-emission carbon dots (D-CDs) synthesized from sustainable biomass carrot and nitrogen-rich precursors (melamine and o-phenylenediamine) through an efficient one-pot hydrothermal approach. The D-CDs exhibited dual emission peaks at 425nm and 540 nm under 370nm excitation.

View Article and Find Full Text PDF

Aims/hypothesis: Unimolecular peptides targeting the receptors for glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP) and glucagon (GCG) have been shown to improve glycaemic management in both mice and humans. Yet the identity of the downstream signalling events mediated by these peptides remain to be elucidated. Here, we aimed to assess the mechanisms by which a validated peptide triagonist for GLP-1/GIP/GCG receptors (IUB447) stimulates insulin secretion in murine pancreatic islets.

View Article and Find Full Text PDF

Population substructure affects kinship testing in multi-ethnic areas of China.

Int J Legal Med

September 2025

West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Ren Min Nan Road 3-17, P.O.Box: 610041, Chengdu, P. R. China.

The likelihood ratio (LR) is a recommended metric for assessing the strength of genetic information in relationship testing, one of the most important tasks in forensic science. LR calculation incorporate population frequencies, which is affected by population substructure. This study utilized population frequency data from 18 short tandem repeat (STR) loci across 13 Chinese populations, encompassing both majority and minority ethnic groups.

View Article and Find Full Text PDF

Sulfated fucan has attracted growing attention due to its diverse biological properties. Endo-1,3-fucanases are valuable tools for the degradation of sulfated fucan. This study characterized an endo-1,3-fucanase Fun174Sb from the GH174 family, utilizing a combination of protein crystallography, mutagenesis, computational biology, and nuclear magnetic resonance techniques.

View Article and Find Full Text PDF

Jahn-Teller Distortion Enables Enhanced Piezoelectric Energy Harvesting Properties of a Metal-Pyrazolylborate Complex.

Inorg Chem

September 2025

College of Chemistry and Chemical Engineering, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University, Qingdao, Shandong 266071, P. R. China.

Molecular piezoelectrics have garnered significant attention in energy harvesting and sensing fields due to their high intrinsic piezoelectricity, low elastic properties, and excellent solution processability. Recent efforts have primarily focused on rationally tuning the piezoelectric performance of these materials through the molecular predesign of organic components. However, the regulation of piezoelectric properties via the central metal ion has remained relatively underexplored.

View Article and Find Full Text PDF

Myocardial fibrosis, a key pathological feature of hypertensive heart disease (HHD), remains diagnostically challenging due to limited clinical tools. In this study, a FAPI-targeted uptake mechanism previously reported by our group, originally developed for tumor imaging, is extended to the detection of myocardial fibrosis in HHD using [F]F-NOTA-FAPI-MB. The diagnostic performance of this tracer is compared with those of [F]F-FDG, [F]F-FAPI-42, and [F]F-NOTA-FAP2286, and its potential for fluorescence imaging is also evaluated.

View Article and Find Full Text PDF

Surface-Driven Electron Localization and Defect Heterogeneity in Ceria.

J Am Chem Soc

September 2025

Kathleen Lonsdale Materials Chemistry, Department of Chemistry, University College London, London WC1H 0AJ, U.K.

The exceptional performance of ceria (CeO) in catalysis and energy conversion is fundamentally governed by its defect chemistry, particularly oxygen vacancies. The formation of each oxygen vacancy (V) is assumed to be compensated by two localized electrons on cations (Ce). Here, we show by combining theory with experiment that while this 1 V: 2Ce ratio accounts for the global charge compensation, it does not apply at the local scale, particularly in nanoparticles.

View Article and Find Full Text PDF

Transformation of Co(OH) to CoOOH for Photocatalytic Oxygen Evolution Reaction.

J Phys Chem Lett

September 2025

Department of Electrical and Computer Engineering, University of Houston, Houston, Texas 77204, United States.

The development of efficient and economical oxygen evolution reaction (OER) catalysts is highly desired, and cobalt-based nanomaterials are promising candidates. In this work, we tackle one key question for cobalt-assisted photocatalytic OER: What is the true active species of Co(OH) for the photocatalytic OER? Hence, we investigated photocatalytic OER on nanostructured Co(OH) and CoO for comparison. We found that there was a significant transformation of Co(OH) during the photocatalytic process with a [Ru(bpy)]/SO buffer.

View Article and Find Full Text PDF

Hard carbon (HC) has emerged as a promising anode material for sodium-ion batteries (SIBs) owing to its superior sodium storage performance. However, the high cost of conventional HC precursors remains a critical challenge. To address this, coal─a low-cost, carbon-rich precursor─has been explored for HC synthesis.

View Article and Find Full Text PDF

Isoxazoles to Multisubstituted Thiazoles via an Ammonium Iodide-Catalyzed Formal [3+2] Cycloaddition Reaction.

Org Lett

September 2025

National Key Laboratory of Advanced Drug Delivery and Release Systems, School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, P. R. China.

A method for the conversion of isoxazoles into thiazoles by skeleton rearrangement has been achieved by an ammonium iodide-catalyzed cycloaddition protocol under mild conditions with a broad substrate scope and good functional group tolerance. Most appealingly, the reaction can proceed smoothly without the addition of any transition metal catalyst. Detailed mechanistic studies, including control experiments and key reaction intermediate characterization, reveal an intermolecular [3+2] cycloaddition reaction pathway.

View Article and Find Full Text PDF

Zinc Phosphate Passivation Enables Photostable Pixelated Quantum Dot Color Conversion Layers for Display Applications.

J Phys Chem Lett

September 2025

State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300401, P. R. China.

Quantum dots (QDs) converted to micro light-emitting diodes (LEDs) have emerged as a promising technology for next-generation display devices. However, their commercial application has been hindered by the susceptibility of QDs to photodegradation when directly exposed to an open environment. Here, we develop functional ligand zinc bis[2-(methacryloyloxy)ethyl] phosphate (Zn(BMEP)) to passivate QD surface anions through a phosphine-mediated surface reaction.

View Article and Find Full Text PDF

Rational design of tunable pH switches through shadow-strand hybridization-actuated displacement engineering.

Nucleic Acids Res

September 2025

Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P. R. China.

Local pH variations play a pivotal role in numerous critical biological processes. However, achieving the tunability and selectivity of pH detection remains a challenge. Here, we present a DNA-based strategy that enables programmable and selective pH responses, which is termed shadow-strand hybridization-actuated displacement engineering (SHADE).

View Article and Find Full Text PDF

Introduction: Hematopoietic stem cell transplantation (HSCT) is a promising treatment option for hematological malignancies. Despite its curative potential, it faces clinical challenges, including relapse and graft-versus-host disease (GVHD). Systemic toxicity due to chemotherapy is a significant problem in patients with hematological malignancies.

View Article and Find Full Text PDF

High-Level Soluble Expression of Recombinant Human Bone Morphogenetic Protein-2 in .

ACS Synth Biol

September 2025

The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China.

Human Bone Morphogenetic Protein-2 (hBMP-2) serves as a critical regulator in bone and cartilage formation; however, its industrial application is hindered by its inherent tendency to form inclusion bodies in prokaryotic expression systems. To address this issue, we established a recombinant hBMP-2 (rhBMP-2) expression system using the pCold II plasmid and the SHuffle T7 strain. We explored several strategies to enhance the solubility of rhBMP-2, including coexpression with molecular chaperones, vesicle-mediated secretory expression, fusion expression with synthetic intrinsically disordered proteins (SynIDPs), and fusion expression with small-molecule peptide tags.

View Article and Find Full Text PDF

CsCO-Catalyzed Decarboxylation/Cyclization to Access Functionalized 8-Hydroxyisoquinoline-1(2)-ones and 2-Pyridones Assisted by Microwave Irradiation.

J Org Chem

September 2025

National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, P. R. China.

We herein describe a novel decarboxylation/cyclization sequence involving a three-component reaction of dialkyl 2-(alkoxymethylene)malonate, amines, and terminal alkyne ester or internal alkyne ester catalyzed by CsCO under microwave conditions. These two types of highly chemo- and regioselective transformations were accomplished by different reaction channels to furnish a wide range of functionalized 8-hydroxyisoquinoline-1(2)-ones (21 examples) and 2-pyridones (18 examples) in good to excellent yields and might provide new opportunities for the discovery of N-heterocyclic drugs and other functional molecules.

View Article and Find Full Text PDF

The COVID-19 pandemic remains a global health crisis, with successive SARS-CoV-2 variants exhibiting enhanced transmissibility and immune evasion. Notably, the Omicron variant harbors extensive mutations in the spike protein's receptor-binding domain (RBD), altering viral fitness. While temperature is a critical environmental factor modulating viral stability and transmission, its molecular-level effects on variant-specific RBD-human angiotensin-converting enzyme 2 (hACE2) interactions remain underexplored.

View Article and Find Full Text PDF

The rational design of electrode materials with outstanding energy and power density for supercapacitors (SCc) and high-performance electrocatalysts in alkaline media plays an indispensable role in the application of energy storage and overall water splitting. In this paper, we prepared NiCoFe layered ternary hydroxides (LTH) using a hydrothermal synthesis method. The sample with a Ni/Co/Fe ratio of 1:2:0.

View Article and Find Full Text PDF

Contrastive Study on Substitution of the Bulky Phosphanide [P(SiPr)] toward Heavier Tetrylenes.

Inorg Chem

September 2025

Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Key Laboratory of Light Energy Conversion Materials of Hunan Province College, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China.

The super bulky sodium phosphanide, NaP(SiPr), was reacted with amidinatotetrylenes LECl (L = PhC(NBu), E = Si, Ge), resulting in the formation of phosphasilene LSi(SiPr) = PSiPr () and phosphanido germylene LGeP(SiPr) (), respectively. Investigation on the reactivity of and toward elemental sulfur was carried out, where a stepwise reaction yielding the silanethione LSi(=S)SiPr () and the silicon thioester analogue LSi(=S)SSiPr () was observed in the case of , while the treatment of with sulfur exclusively afforded the germanium thioester analogue. In addition, the reactions of with Fe(CO) and GeCl·1,4-dioxane led to the germylene-coordinated iron carbonyl and the asymmetric Ge-Ge-bonded complex, respectively, exhibiting the reactivity of the lone pair as well as a weak Ge-P bond.

View Article and Find Full Text PDF

Accelerated sonochemical fabrication of a polydopamine@COF hierarchical structure for boosting HO photosynthesis.

Chem Commun (Camb)

September 2025

School of Chemical Sciences & Technology, School of Materials and Energy, Yunnan Provincial Center of Technology Innovation for New Materials and Equipment in Water Pollution Control, Yunnan Institute of Frontier Technologies in Water Treatment, Yunnan University, Kunming 650091, P. R. China. jqwang

In this work, a novel organic heterojunction of polydopamine (PDA)@covalent organic framework (COF) was efficiently synthesized the sonochemical method, leveraging the multifunctional properties of PDA as nucleation sites for COF shell (sonoTp-TAPB) growth. The as-prepared PDA@sonoTp-TAPB hierarchical structure delivers a photocatalytic HO production rate of 728.4 μmol g h in pure water.

View Article and Find Full Text PDF

Hydrogen Radical Mediated Concerted Electron-Proton Transfer in 1D Sulfone-based Covalent Organic Framework for Boosting Photosynthesis of HO.

Angew Chem Int Ed Engl

September 2025

College of Smart Materials and Future Energy, Fudan University, Songhu Road 2005, Shanghai, 200438, P.R. China.

Solar-driven photocatalytic oxygen reduction reaction using covalent organic frameworks (COFs) offers a promising approach for sustainable hydrogen peroxide (HO) production. Despite their advantages, the reported COFs-based photocatalysts suffer insufficient photocatalytic HO efficiency due to the mismatched electron-proton dynamics. Herein, we report three one-dimensional (1D) COF photocatalysts for efficient HO production via the hydrogen radical (H•) mediated concerted electron-proton transfer (CEPT) process.

View Article and Find Full Text PDF

Fibrotic scarring remains a critic obstacle to axonal regeneration after spinal cord injury (SCI). Current strategies primarily concentrating on eliminating extracellular matrix (ECM) components neglect their dispensable roles in maintaining tissue integrity. Here, it is reported that the mechanical strength of an integrated hydrogel composed of hyaluronic acid-graft-dopamine and HRR peptide directs fibroblast migration, determining ECM deposition.

View Article and Find Full Text PDF

The construction of strong metal-support interactions (SMSI) is an effective strategy to enhance and control heterogeneous catalysts. However, conventional methods require pre-synthesized metal-loaded catalysts, followed by SMSI formation via high-temperature treatment under oxidative/reductive atmospheres, adsorbate-mediated treatment, and photo-treatment, adding complexity to catalyst synthesis and hindering continuous interfacial tuning. In this work, a "photobreeding" method is employed to treat ZnCdS, leveraging the UV-induced photochromic reaction of ZnS to generate metallic Zn at room temperature, while CdS remains inert.

View Article and Find Full Text PDF