Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The exceptional performance of ceria (CeO) in catalysis and energy conversion is fundamentally governed by its defect chemistry, particularly oxygen vacancies. The formation of each oxygen vacancy (V) is assumed to be compensated by two localized electrons on cations (Ce). Here, we show by combining theory with experiment that while this 1 V: 2Ce ratio accounts for the global charge compensation, it does not apply at the local scale, particularly in nanoparticles. Hybrid quantum mechanical/molecular mechanical (QM/MM) defect calculations, together with synchrotron X-ray photoelectron spectroscopy (XPS) measurements, show that electrons have a strong preference to localize and segregate on surfaces, which can overcome the trapping force from the V sites in the bulk. At a given Fermi level, the surface V tends to trap more electrons than those in bulk, resulting in a higher Ce to V ratio on surfaces than that in the bulk, driven by the preferential localization of electrons and enhanced V-Cecoupling. Large-scale unbiased Monte Carlo simulations on ceria nanoparticles confirmed this trend and further show that the surface segregation of electrons is more pronounced at low reduction levels and in smaller nanoparticles. In highly reduced ceria nanoparticles, however, the enhanced repulsive interactions lead to a less significant extent of defect heterogeneity or even reverse the location preference of defects in some nanoparticles. Our findings underscore the need to consider both the overall nonstoichiometry and local defect behavior in easily reducible oxides, with direct relevance to their performance in catalytic and energy applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.5c10679DOI Listing

Publication Analysis

Top Keywords

defect heterogeneity
8
ceria nanoparticles
8
defect
5
electrons
5
nanoparticles
5
surface-driven electron
4
electron localization
4
localization defect
4
ceria
4
heterogeneity ceria
4

Similar Publications

Congenital disorders of glycosylation (CDG) are a heterogeneous group of inherited metabolic diseases (IMD) characterized by defects in the synthesis and modification of glycoproteins and glycolipids. One of these disorders is ATP6AP1-CDG, a rare X-linked disease with approximately 30 cases reported so far. Symptoms associated with ATP6AP1-CDG include immunodeficiency, liver dysfunction, and neurological manifestations.

View Article and Find Full Text PDF

Clinical and Imaging Predictors of Hematoma Expansion in Spontaneous Intracerebral Hemorrhage: Development of a Prognostic Model.

Risk Manag Healthc Policy

September 2025

Department of Neurosurgery Intensive Care Unit, the Affiliated Wuxi People's Hospital of Nanjing Medical University,Wuxi Medical Center,Nanjing Medical University, Wuxi People's Hospital, Wuxi, Jiangsu Province, 214023, People's Republic of China.

Background: Identifying risk factors associated with hematoma expansion following spontaneous intracerebral hemorrhage (ICH) is essential for improving early intervention strategies. We hope to use this predictive model in the future to comprehensively score the risk factors of hospitalized patients with cerebral hemorrhage and evaluate the possibility of hematoma enlargement. Being able to identify high-risk patients with hematoma enlargement early and take intervention measures to save their lives.

View Article and Find Full Text PDF

Adult congenital heart disease (ACHD) constitutes a heterogeneous and expanding patient cohort with distinctive diagnostic and management challenges. Conventional detection methods are ineffective at reflecting lesion heterogeneity and the variability in risk profiles. Artificial intelligence (AI), including machine learning (ML) and deep learning (DL) models, has revolutionized the potential for improving diagnosis, risk stratification, and personalized care across the ACHD spectrum.

View Article and Find Full Text PDF

MRI-negative cerebellar syndrome caused by medication-induced magnesium deficiency: a case report.

BMC Neurol

September 2025

Department of Neurology, University Hospital, RWTH Aachen University, Pauwelsstrasse 30, Aachen, North Rhine-Westphalia, Germany.

Background: Cerebellar pathologies in adults can have a wide range of hereditary, acquired and sporadic-degenerative causes. Due to the frequency in daily hospital, especially intensive care, settings, electrolyte imbalances are an important, yet rare differential diagnosis. The hypomagnesemia-induced cerebellar syndrome (HiCS) constitutes a relevant disease entity with clinical and morphological variability due to a potential progression of symptoms and a promising causal treatment.

View Article and Find Full Text PDF

Background: IgG4-related lung disease (IgG4-RLD) is a rare autoimmune condition. This study aims to systematically analyze the clinical characteristics of IgG4-RLD to enhance clinicians' awareness and improve patient outcomes.

Methods: This retrospective analysis investigates the clinical data of 20 patients diagnosed with IgG4-RLD at the Yichang Central People's Hospital between January 2019 and April 2025.

View Article and Find Full Text PDF