Publications by authors named "Peizhe Sun"

Environmental remediation strategies for cadmium (Cd)-contaminated rice paddies often face challenges due to reliance on time-consuming field trials and limited pre-assessment of intervention efficacy. Here, we propose a machine learning and causal inference-integrated framework to enable proactive decision-making, using iron plaque-mediated Cd immobilization as a model system. By analyzing 76 paired soil-rice samples, extreme gradient boosting (XGBoost) and SHapley Additive exPlanations (SHAP) identified six critical drivers of grain Cd accumulation from 31 physicochemical and microbial indicators.

View Article and Find Full Text PDF

Microbial-mediated iron autotrophic denitrification has gained more attention in low C/N wastewater treatment due to the organic carbon-free operation, and minimal carbon emissions. However, the selection of inexpensive iron-based electron donors, as well as the stable colonization of functional microorganisms, still restrict its application of the microbial-mediated iron autotrophic denitrification technology. In this study, we ingeniously inserted the waste iron wires into the waste membrane filaments as a component for the combination of the carrier and the electron donors.

View Article and Find Full Text PDF

Iodinated disinfection byproducts (I-DBPs) are increasingly detected in drinking water due to the widespread use of chlorination and the presence of iodide (I) in source waters. However, understanding the transformation of iodine species during disinfection remains challenging, particularly under varying ammonia concentrations. In this study, a method based on spectrophotometry and HPLC was applied to quantify I, hypoiodous acid (HOI), and iodate (IO) in various water matrices.

View Article and Find Full Text PDF

Catalytic membrane fouling remains a key scientific issue that limits its long-term utilization in practice. This study investigated the fouling issues of catalytic membranes during the degradation of organic pollutants in river water, with a focus on the fouling mechanisms of catalytic membranes due to ion mineralization, organic matter accumulation, and microbial adhesion. We aimed to explore the multi-dimensional fouling processes and anti-fouling mechanisms of catalytic membranes, by embedding Ni-doped AgFeO into protonic acid-modified polyaniline (PANI) to comprehensively enhance the membrane's anti-fouling properties.

View Article and Find Full Text PDF

In this study, count-based Morgan fingerprints (CMF) were employed to represent the fundamental chemical structures of contaminants, and a neural network model (R² = 0.76) was developed to predict acute fish toxicity (AFT) of organic compounds. Models based on CMF consistently outperformed those based on binary Morgan fingerprints (BMF), likely due to the latter's inefficiency in describing homologous structures.

View Article and Find Full Text PDF

Although the hopcalite catalyst, primarily composed of manganese oxide and copper oxide, has been extensively studied for carbon monoxide (CO) elimination, there remains significant potential to optimize its structure and activity. Herein, Cu-doped MnO@MnO catalysts featuring highly exposed interfacial regions were prepared. The correlation between interfacial exposure and catalytic activity indicates that the interfacial region serves as the active site for CO catalytic oxidation.

View Article and Find Full Text PDF

The continuously growing of municipal solid waste (MSW) has posed a threat to human-being. Pyrolysis is a promising technique for MSW disposal, as it can reduce its volume and produce valuable products as well. This study evaluated the potential of carbon residue (CR) derived from waste carton as soil amendment.

View Article and Find Full Text PDF

This study systematically assessed the performance of a newly developed solid-phase extraction (SPE) material, cellulose-supported aminated β-cyclodextrin polymer (amine-β-CDP@Cellulose), in determining 44 xenobiotics, encompassing endocrine-disrupting chemicals (EDCs), pharmaceuticals, and food additives in urine samples. The primary objective of the research was to synthesize a new sorbent, optimize the extraction protocol, and elucidate the underlying adsorption and desorption mechanisms. Following optimization, it was observed that amine-β-CDP@Cellulose achieved recoveries ranging from 80 % to 120 % for 28 of the 44 targeted xenobiotics, with only three compounds showing recoveries below 50 %.

View Article and Find Full Text PDF

Biomass energy recovery from sewage sludge through anaerobic treatment is vital for environmental sustainability and a circular economy. However, large amounts of pharmaceutical and personal care products (PPCPs) remain in sludge, and their interactions with microbes and enzymes would affect resource recovery. This article reviews the effects and mechanisms of PPCPs on anaerobic sludge treatment.

View Article and Find Full Text PDF

Nitrogen, phosphorus and potassium are essential for crop growth, which are abundant in urine. Although numerous studies have developed techniques to recover ammonium and phosphorus from urine, limited research made efforts on the recovery of potassium, which is a non-renewable resource with uneven global distribution. In this study, we explored the possibility of zeolite based mixed matrix membranes (MMMs) to selectively recover ammonium and potassium from urine, with minimal detention of sodium.

View Article and Find Full Text PDF

Thioether compounds, prevalent in pharmaceuticals, are of growing environmental concern due to their prevalence and potential toxicity. Peroxy chemicals, including peroxymonosulfate (PMS) and peroxyacetic acid (PAA), hold promise for selectively attacking specific thioether moieties. Still, it has been unclear how chemical structures affect the interactions between thioethers and peroxy chemicals.

View Article and Find Full Text PDF

Electrochemically in-situ generation of oxygen and caustic soda is promising for sulfide management while suffers from scaling, poor inactivating capacity, hydrogen release and ammonia escape. In this study, the four-compartment electrochemical cell efficiently captured oxygen molecules from the air chamber to produce HO without generating toxic by-products. Meanwhile, the catalyst layer surface of PTFE/CB-GDE maintained a relatively balanced gas-liquid micro-environment, enabling the formation of enduring solid-liquid-gas interfaces for efficient HO electrosynthesis.

View Article and Find Full Text PDF

Peracetic acid (PAA), known for its environmentally friendly properties as a oxidant and bactericide, is gaining prominence in decontamination and disinfection applications. The primary product of PAA oxidation is acetate that can serve as an electron acceptor (EA) for the biosynthesis of medium-chain fatty acids (MCFAs) via chain elongation (CE) reactions. Hence, PAA-based pretreatment is supposed to be beneficial for MCFAs production from anaerobic sludge fermentation, as it could enhance organic matter availability, suppress competing microorganisms and furnish EA by providing acetate.

View Article and Find Full Text PDF

Medium-chain fatty acids (MCFAs) production from sewage sludge is mainly restricted by the complex substrate structure, competitive metabolism and low electron transfer rate. This study proposes a novel permanganate (PM)-based strategy to promote sludge degradation and MCFAs production. Results show that PM pretreatment significantly increases MCFAs production, i.

View Article and Find Full Text PDF

The effective hydrogen production in single-chamber microbial electrolysis cells (MECs) has been seriously challenged by various hydrogen consumers resulting in substantial hydrogen loss. In previous studies, the total ammonia nitrogen (TAN) has been used to inhibit certain hydrogen-consuming microorganisms to enhance hydrogen production in fermentation. In this study, we explored the feasibility of using source-separated urine to overcome hydrogen loss in the MEC, with the primary component responsible being TAN generated via urea hydrolysis.

View Article and Find Full Text PDF

Magnesium galvanic process (MGP) can be applied to recover phosphate from source-separated urine. However, information on how the urine matrix affects MGP performance is limited. Therefore, this study investigated the mechanism of phosphate recovery by MGP in synthetic and real urine matrixes.

View Article and Find Full Text PDF

Nowadays, antidepressants are massively consumed worldwide, inevitably bringing about the concern for their latent hazard to the natural environment. This research focused on exploring the effect of sertraline (SET, a typical antidepressant) on hydrogen yields from alkaline anaerobic fermentation of waste activated sludge (WAS). The hydrogen accumulation reached the peak of 14.

View Article and Find Full Text PDF

Determining conditional stability constant (K) is paramount in assessing complex stability, particularly in Fe(III) complexes that are prevalent in actual surface water and wastewater matrices. In this study, existing methods of K determination were evaluated and a novel UV-Vis spectroscopy method was proposed based on the evaluation of these approaches. Model ligands (ethylenediaminetetraacetic acid (EDTA), nitrilotriacetic acid (NTA), and oxalic acid (OA)), as well as common antibiotics (kanamycin (Kana) and tetracycline (TTC)), were employed to determine the K of the Fe(III)-ligand complexes under neutral conditions (pH 6.

View Article and Find Full Text PDF

Accumulation of toxic elements by plants from polluted soil can induce the excessive formation of reactive oxygen species (ROS), thereby causing retarded plants' physiological attributes. Several researchers have remediated soil using various forms of zerovalent iron; however, their residual impacts on oxidative stress indicators and health risks in leafy vegetables have not yet been investigated. In this research, nanoscale zerovalent iron supported with coconut-husk biochar (nZVI-CHB) was synthesized through carbothermal reduction process using FeO and coconut-husk.

View Article and Find Full Text PDF

Although phosphorus (P) recovery and management from sewage sludge are practiced in North America and Europe, such practices are not yet to be implemented in China. Here, we evaluated the environmental sustainability opportunity and socio-economic costs of recovering P from sewage sludge by replacing the current-day treatments (CT; sludge treatment and landfill) and P chemical fertilizer application (CF) in China using life cycle assessment and life cycle costing methods. Three potential P recovery scenarios (PR‒PR: struvite, vivianite, and treated sludge) and corresponding current-day scenarios (CT‒CT and CF) were considered.

View Article and Find Full Text PDF

MnO activating HO is a promising way in the field of advanced oxidation processes (AOPs) and in situ chemical oxidation (ISCO) to remove contaminants. However, few studies have focused on the influence of various environmental conditions on the performance of MnO-HO process, which restricts the application in real world. In this study, the effect of essential environmental factors (ionic strength, pH, specific anions and cations, dissolved organic matter (DOM), SiO) on the decomposition of HO by MnO (ε-MnO and β-MnO) were investigated.

View Article and Find Full Text PDF

Although Ag-containing photocatalysts exhibit excellent photocatalytic ability, they present great challenges owing to their photocorrosion and ease of reduction. Herein, an electron acceptor platform of AgO/La(OH)/polyacrylonitrile (PAN) fiber was constructed using a heterojunction strategy and electrospinning technology to develop a novel photocatalytic membrane with a redesigned electron transport pathway. Computational and experimental results demonstrate that the optimized electron transport pathway included intercrystal electron transfer induced by the La-O bond between AgO and La(OH) as well as electron transfer between the catalyst crystal and electrophilic PAN membrane interface.

View Article and Find Full Text PDF

Soil pollution caused by complex organochloride mixtures has been increasing in many parts of the world in recent years; as a result, countless numbers of people are exposed to dangerous pollutions; hence, the treatment of organochlorides-polluted soils is gaining considerable attention. In this study, the potential of unactivated peroxymonosulfate (KHSO) in remediating soil co-contaminated with trichlorophenol, para-dichlorobenzene, and para-chloro-meta-cresol was investigated. In addition, the treatment's collateral effect on critical soil properties was explored.

View Article and Find Full Text PDF

Agricultural application contributes major consumption of antibiotics worldwide. As veterinary antibiotics are poorly metabolized by animals, most of them end up in agricultural waste, which is increasingly subject to thermal treatment, such as torrefaction, pyrolysis, etc. However, there is a lack of research on their thermal decomposition mechanisms and products elucidation.

View Article and Find Full Text PDF

A novel strategy employing urine wastewater derived from source separation technology, to pretreat waste activated sludge (WAS) for promoting yields of short-chain fatty acids (SCFAs), has been proposed in this study. It was found experimentally that SCFA production could ascend up to 305.4 mg COD/g VSS (volatile suspended solids) with a urine volumetric proportion of 1:2 to the whole reaction system, being 8.

View Article and Find Full Text PDF