A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Understanding the Role of Active Lattice Oxygen in CO Oxidation Catalyzed by Copper-Doped MnO@MnO. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Although the hopcalite catalyst, primarily composed of manganese oxide and copper oxide, has been extensively studied for carbon monoxide (CO) elimination, there remains significant potential to optimize its structure and activity. Herein, Cu-doped MnO@MnO catalysts featuring highly exposed interfacial regions were prepared. The correlation between interfacial exposure and catalytic activity indicates that the interfacial region serves as the active site for CO catalytic oxidation. The characteristic adsorption of CO by Cu species significantly enhances the catalytic activity of the catalyst. And XPS and ICP-OES analyses reveal that Cu ions coexist in both the interlayer and lattice of δ-MnO. Furthermore, XPS analysis was employed to quantify the average oxidation state (AOS) of Mn and the molar ratios of oxygen species, demonstrating that both surface-adsorbed oxygen and surface lattice oxygen act as reactive oxygen species in the catalytic reaction, playing a crucial role in CO oxidation. Notably, the surface reactive oxygen species influence the adsorption of CO onto Cu species, and the replenishment of these reactive species is identified as the rate-limiting step in the CO catalytic oxidation process.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11858229PMC
http://dx.doi.org/10.3390/molecules30040865DOI Listing

Publication Analysis

Top Keywords

oxygen species
12
lattice oxygen
8
catalytic activity
8
catalytic oxidation
8
adsorption species
8
reactive oxygen
8
oxygen
6
species
6
oxidation
5
catalytic
5

Similar Publications