A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Potassium and ammonium recovery in treated urine by zeolite based mixed matrix membranes. | LitMetric

Potassium and ammonium recovery in treated urine by zeolite based mixed matrix membranes.

J Environ Manage

Georgia Tech Shenzhen Institute, Tianjin University, Shenzhen, China. Electronic address:

Published: September 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Nitrogen, phosphorus and potassium are essential for crop growth, which are abundant in urine. Although numerous studies have developed techniques to recover ammonium and phosphorus from urine, limited research made efforts on the recovery of potassium, which is a non-renewable resource with uneven global distribution. In this study, we explored the possibility of zeolite based mixed matrix membranes (MMMs) to selectively recover ammonium and potassium from urine, with minimal detention of sodium. The findings demonstrated that upon the pre-treatment of zeolites with sodium chloride solution, a 70 wt% zeolite loaded MMM could achieve 69.3 % recovery of potassium and almost full recovery of ammonium. By varying the desorption temperatures and MMMs production process, it was discovered that stepwise backwash at low temperature (276 K) greatly lowered sodium recovery whilst simultaneously enhancing the recovery of potassium and ammonium. This study demonstrates the potential of recovering potassium and ammonium from urine using zeolite-loaded MMMs, coupled with achieving low-sodium recovery.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2024.122169DOI Listing

Publication Analysis

Top Keywords

potassium ammonium
12
recovery potassium
12
zeolite based
8
based mixed
8
mixed matrix
8
matrix membranes
8
recover ammonium
8
potassium
7
recovery
7
urine
5

Similar Publications