Enhanced strategies for phosphate recovery from urine by magnesium galvanic process.

Water Res

School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China. Electronic address:

Published: October 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Magnesium galvanic process (MGP) can be applied to recover phosphate from source-separated urine. However, information on how the urine matrix affects MGP performance is limited. Therefore, this study investigated the mechanism of phosphate recovery by MGP in synthetic and real urine matrixes. Our results showed that the major components in urine (i.e., NH, Cl, and HCO) all exhibited acceleration effects on corrosion of Mg plate. However, the underlying action mechanism of each component was distinct. Ammonium facilitated the conversion from MgO to Mg(OH), chloride complexed with Mg ions, and bicarbonate led to complexation as well as formation of MgCO. Furthermore, our results revealed an interesting aspect where although bicarbonate alone accelerated the corrosion of Mg plate, its coexistence with other ions inhibited overall performance due to the blocking effect of formed MgCO on chloride penetration and reduction in free magnesium ion concentration. After elucidating the interaction of NH, Cl, and HCO on the passive layer of the Mg plate, we proposed to pretreat urine with HCl, which resulted in a significant enhancement in current production and phosphate recovery. This improved MGP was further tested in a continuous flow reactor, which recovered over 95% of phosphate in real urine for more than 1 h. The phosphate precipitates were confirmed as high purity struvite. Generally, the improved MGP, which simultaneously produced Mg, dihydrogen, and electricity with no energy input, is a promising sustainable and green alternative for phosphate recovery from source-separated urine.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2023.120669DOI Listing

Publication Analysis

Top Keywords

phosphate recovery
16
urine
8
magnesium galvanic
8
galvanic process
8
source-separated urine
8
real urine
8
corrosion plate
8
improved mgp
8
phosphate
7
mgp
5

Similar Publications

Water eutrophication has emerged as a pervasive ecological challenge worldwide. To realize the resource utilization of waste and nutrients, a novel rape straw-derived biochar-calcium alginate composite (M-CA-RBC) immobilized Pseudomonas sp. H6 was synthesized to simultaneously remove phosphate (PO) and ammonium (NH) from distillery wastewater.

View Article and Find Full Text PDF

A rapid and automated determination of nicotinamide adenine dinucleotide phosphate (NADPH) is proposed and applied to the evaluation of glucose-6-phosphate dehydrogenase (G6PD) deficiency in real samples. To this end, a sequential injection analyzer with electrochemical detection (SIA-ECD) is proposed with 0.1 mol L Tris-HCl (pH 8.

View Article and Find Full Text PDF

Methionine-based insights into C-S-Fe-P transformations in anaerobic co-digestion of sludge containing iron-phosphorus compounds.

Water Res

August 2025

State Key Laboratory of Water Pollution Control and Green Resource Recycling, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China. Electronic address:

Anaerobic co-digestion of sulfur-containing organic wastes with waste-activated sludge containing iron-phosphorus compounds (FePs) was recently suggested as an environment-friendly strategy to promote phosphate release, energy recovery, and hydrogen sulfide (HS) control. Nevertheless, the mechanistic coupling between FePs speciation and the concurrent transformation of carbon, sulfur, iron, and phosphorus within this system remains to be fully elucidated. To address this knowledge gap, methionine, a typical hydrolysis product of sulfur-containing organics, and five FePs prevalent in sludge (ferric-phosphate tetrahydrate (FePO⋅4HO), ferric-phosphate dihydrate (FePO⋅2HO), vivianite (Fe(PO)·8HO), phosphate coprecipitated with Fe(III) (COP-P), and phosphate adsorption on hydrous ferric oxide (HFO-P)) were selected to elucidate C-S-Fe-P transformations in this study.

View Article and Find Full Text PDF

Amidst global sustainability imperatives, this study pioneers a solid-state regeneration strategy that transforms spent LiCoO (LCO) cathodes into high-performance materials via amorphous lithium iron phosphate glass (LFPg)-driven structural reconfiguration. Unlike conventional recycling that decomposes cathodes, our approach leverages LFPg's defect-rich framework, high ionic conductivity, and dynamic interfacial activity to directly reconstruct degraded LCO crystals. The LFPg acts as a multifunctional repair agent: creating Li diffusion channels through disorder engineering, eliminating oxygen vacancies via atomic oxygen transfer, scavenging impurities (e.

View Article and Find Full Text PDF

Macroautophagy (hereafter, autophagy) is essential for the degradation of mitochondria from yeast to humans. Mitochondrial autophagy in yeast is initiated when the selective autophagy scaffolding protein Atg11 is recruited to mitochondria through its interaction with the selective autophagy receptor Atg32. This also results in the recruitment of small 30-nm vesicles that fuse to generate the initial phagophore membrane.

View Article and Find Full Text PDF