Publications by authors named "Yidi Li"

Numerous studies have shown that exposure to arsenic (As) or fluoride(F) can damage the reproductive system, but limited evidence exists regarding the combined toxicity and pathogenesis of As and F co-exposure in female reproduction. Moreover, the role of gut microbiota in mediating such toxicity remains unclear. This study investigated the effects of As and F co-exposure on ovarian development and the potential protective role of fecal microbiota transplantation (FMT).

View Article and Find Full Text PDF

Numerous natural architectures achieve multifunctionality through mild formation processes. Natural nacre is composed of about 90 wt % calcium carbonate aragonite flakes and 5 wt % chitin, exhibiting excellent mechanical properties, optical transmittance, and underwater superoleophobicity. In this work, a nacre-inspired biomineralized film with high transparency and mechanically robust underwater superoleophobicity was synthesized through Mg-PAA coordinated regulation under ambient conditions.

View Article and Find Full Text PDF

Multi-instance learning (MIL) exhibits advanced and surpassed capabilities in understanding and recognizing complex patterns within gigapixel histopathological images. However, current MIL methods for the analysis of the histopathological images still give rise to two main concerns. On one hand, vanilla MIL methods intuitively focus on identifying salient instances (easy-to-classify instances) without considering hard-to-classify instances, which is biased and prone to produce false positive instances.

View Article and Find Full Text PDF

Amphiphilic block copolymers with complex topologies (e.g., star and brush topologies) have attracted significant attention in drug delivery owing to their superior performance over linear micelles.

View Article and Find Full Text PDF

The exoskeleton of arthropods exhibits a Bouligand structure, composed of a chitin matrix and calcium carbonate crystals, which confer exceptional mechanical properties. While many studies focus on the relationship between structure and performance, few investigate the mineral growth process within the Bouligand matrix. Here, chiral chitin films are prepared through evaporation-induced self-assembly of chitin nanowhiskers, and subsequently incubated in SrCO mineralizing solution.

View Article and Find Full Text PDF

DNA methylation is one mechanism of epigenetic regulation in plants. Small interfering RNAs (siRNAs) targeted endogenous genes and caused the promoters to be hypermethylated, namely RNA-directed DNA methylation (RdDM). Repressor of silencing 1 (ROS1) is an active DNA demethylase involved in the regulation of DNA methylation.

View Article and Find Full Text PDF

Unlabelled: The latent human immunodeficiency virus (HIV) reservoir presents the biggest obstacle to curing HIV chronic infection. Consequently, finding novel strategies to control the HIV reservoir is critical. Natural killer (NK) cells are essential for antiviral immunity.

View Article and Find Full Text PDF

Conductive hydrogels have wide application prospects in flexible electronics, biosensors, and soft robotics because of their high flexibility, adjustable mechanical properties, and excellent electrochemical properties. However, it is difficult for a pure conductive polymer or rigid conductive filler hydrogel to meet the application requirements regarding electricity, mechanics, biocompatibility, and stability. To solve this problem, a special combination of polyacrylic acid (PAA) and liquid metal (LM) was adopted.

View Article and Find Full Text PDF

Taking a sewage treatment plant in Suzhou City, Jiangsu Province, as an example, the greenhouse gas (GHG) emissions generated in the sewage treatment system were calculated using the carbon balance method and the emission factor method. The environmental impacts and economic aspects of different treatment units in wastewater treatment plants were analyzed using life cycle assessment, cost-benefit analysis, and data envelopment analysis models, and emission reduction pathways were proposed. The results indicated that the total GHG emissions (in terms of CO) from a certain municipal wastewater treatment plant in Suzhou were 6 653.

View Article and Find Full Text PDF

In this work, the oxidation behavior of an aluminide coating at 900, 1000, and 1100 °C was investigated. The aluminide coating was prepared on a cobalt-based superalloy using a vapor phase aluminizing process, which is composed of a β-(Co,Ni)Al phase outer layer and a Cr-rich phase diffusion layer. The experimental results showed that the oxidation of the coating at 900-1100 °C all obey the parabolic law.

View Article and Find Full Text PDF

The fabrication of multi-layer alloys by additive friction stir deposition (AFSD) results in a complicated microstructure and mechanical property evolution due to the repeated thermal inputs impacting the existing deposited layers. This work systematically studied the microstructure and mechanical properties of several areas (last layers, intermediate layers, and first layers) of a 16-layer 2195 alloy component fabricated by AFSD to ascertain the effect of repeated thermal cycling. The periodic heat input resulted in the minimal quantities of T-phase only appearing in the last layers of the sample, while the θ'-phase developed a complex precipitate with the δ' and β' phases.

View Article and Find Full Text PDF

In this work, twenty-one core samples of tailings wastes were collected from Yeshan iron tailings pond in Jiangsu Province, China. The mineralogical-chemical properties of Yeshan iron ore tailings (IOTs) were investigated to explore potential utilization. Mineralogical investigations and mineral liberation analysis indicated that the iron tailings have complex texture and incomplete mineral liberation, suggesting further grinding can improve higher recovery.

View Article and Find Full Text PDF

This study is the first to research the microstructure and mechanical properties of the workpiece after additive friction stir deposition (AFSD) of the feedstock at different heat treatment stages. AA2219 aluminum alloys with three different heat treatment stages were selected as the feedstock, and alloys with dense structure were successfully prepared by the additive friction stir deposition AFSD process. Experimental results show that AFSD exhibits an excellent ability to refine grains and improve the uniform distribution of precipitates in the second phase, thereby improving the plasticity of AA2219 alloy after the AFSD process.

View Article and Find Full Text PDF

Pigmented rodent tooth enamel is mainly composed of parallel hydroxyapatite nanorods and a small amount of organic matrix. These hydroxyapatite nanorods tend to be carbonated and contain traces of iron, fluorine, and magnesium. The pigmented rodent tooth enamel which contains trace iron is stronger and more resistant to acid corrosion than unpigmented rodent enamel, which could provide inspiration for the preparation and synthesis of high performance and corrosion resistant artificial materials.

View Article and Find Full Text PDF

In this study, composite plates of 6061/TA1 were successfully manufactured using additive friction stir deposition (AFSD). The impact of preheating temperatures (room temperature, 100 °C, 200 °C) on the interfacial microstructure and interface mechanical properties at various deposition zones was studied. The results showed that as the preheating temperature increased or when the deposit zone shifted from the boundary to the center, the diffusion width of Al and Ti increased, accompanied by an increase in bonding shear strength.

View Article and Find Full Text PDF

Natural killer (NK) cells are crucial for immune responses to viral infections. CD160 is an important NK cell activating receptor, with unknown function in HIV infection. Here, we found that CD160 expression was reduced on NK cells from HIV-infected individuals and its expression was negatively correlated with HIV disease progression.

View Article and Find Full Text PDF

Under visible light, non-photosynthetic microorganism/semiconductor has recently shown promising applications in biofuel production, bioenergy generation and pollutant removal. However, the understanding of electron transfer mechanism at the biotic-abiotic interface is limited. Herein, mixed culture/carbon nitride and pure culture (Stenotrophomonas maltophilia HP14)/carbon nitride were constructed to reveal the energy conversion pathway under visible light.

View Article and Find Full Text PDF

Amorphous intergranular phases in mature natural tooth enamel are found to provide better adhesion and could dramatically affect their mechanical performance as a structure reinforcing phase. This study successfully synthesized an amorphous intergranular phase enhanced fluorapatite array controlled by Mg (FAP-M) at room temperature. Furthermore, atom probe tomography (APT) observation presents that Mg is enriched at grain boundaries during the assembly of enamel-like fluorapatite arrays, leading to the formation of intergranular phases of Mg-rich amorphous calcium phosphate (Mg-ACP).

View Article and Find Full Text PDF

Organisms can synthesize heterogeneous structures with excellent mechanical properties through mineralization, the most typical of which are teeth. The tooth is an extraordinarily resilient bi-layered material that is composed of external enamel perpendicular to the tooth surface and internal dentin parallel to the tooth surface. The synthesis of enamel-like heterostructures with good mechanical properties remains an elusive challenge.

View Article and Find Full Text PDF

Perfluorooctanoic acid (PFOA) is persistent in the environment. The activities of microorganisms alone are insufficient for the decomposition of PFOA, but microorganisms can contribute positively to the degradation of PFOA in synergistic systems. Herein, a synergistic system combining photocatalytic decay with microbial degradation of the transformation products was applied to degrade 500.

View Article and Find Full Text PDF

The formation of natural structures found in biological systems is wonderful and can be completed at ambient temperatures in contrast to artificial technologies wherein harsh conditions are common prerequisites. A new research direction, "bioprocess inspired manufacturing", is proposed for fabricating advanced materials with novel structures and functions. Nacre consists of an ordered multilayer structure of crystalline calcium carbonate lamellae separated by organic layers exhibiting mechanical toughness, which transcends that of its constituent components.

View Article and Find Full Text PDF

Ciprofloxacin is an extensively used fluoroquinolone antibiotic, which exists in aquatic environment, causing detrimental effects to the aquatic ecosystem and thus, indirectly to humans. Thus, an efficient and rapid removal method for ciprofloxacin is urgently needed. Intimately coupled photocatalysis and biodegradation has proven to be highly efficient, low-cost, and eco-friendly.

View Article and Find Full Text PDF

Tooth enamel is composed of arrayed fluorapatite (FAP) or hydroxyapatite nanorods modified with Mg-rich amorphous layers. Although it is known that Mg plays an important role in the formation of enamel, there is limited research on the regulatory role of Mg in the synthesis of enamel-like materials. Therefore, we focus on the regulatory behavior of Mg in the fabrication of biomimetic mineralized enamel-like structural materials.

View Article and Find Full Text PDF

Poplar trees are excellent varieties widely used for gardening and greening. However, their single color and floating fluffy seeds are major disadvantages. Plant species or varieties with variegated leaves are desperately needed to meet various demands for gardens, urban greening and landscape decoration, as they produce rich foliage colors that are aesthetically pleasing and functional.

View Article and Find Full Text PDF