Mater Today Bio
August 2025
Musculoskeletal disorders pose a significant global health burden, necessitating innovative strategies for tissue repair and regeneration. Low-dimensional piezoelectric materials, characterized by their nanoscale dimensions and unique electromechanical coupling properties, have emerged as promising candidates for addressing these challenges. This review synthesizes advances in the application of low-dimensional piezoelectric materials (including 0D nanoparticles, 1D nanowires/nanofibers, and 2D nanosheets) across musculoskeletal tissues (including articular cartilage, bone, skeletal muscle and ligaments/tendons) in the past five years.
View Article and Find Full Text PDFACS Appl Mater Interfaces
July 2025
Teriparatide, the N-terminal derivative of parathyroid hormone (PTH), is currently used for the treatment of osteoporosis through daily subcutaneous injection. However, there are still challenges in topical delivery of PTH or teriparatide due to the initial burst release generally inducing the healing failure of osteoporotic bone defects (OPD). Local anchoring of PTH derivatives is a potential strategy for the repair of OPD.
View Article and Find Full Text PDFQuantifying surface-specific kinetics of organic oxidation in heterogeneous catalytic systems remains a critical challenge due to the interplay of adsorption and complex reaction mechanisms. In this study, we introduce a novel kinetic framework that distinguishes surface reaction kinetics () from conventional solution-phase kinetics (), using nitrogen-doped porous carbon (NPC) as a model catalyst with high adsorption capacity and exceptional efficacy in peroxymonosulfate (PMS) activation. By directly analyzing the selective oxidation of fully adsorbed -substituted phenolic compounds (-PCs), we precisely quantified and established robust QSAR models with remarkable linear correlations ( = 0.
View Article and Find Full Text PDFThe repair of diabetic wounds is a global challenge due to elevated levels of blood sugar and microvascular disorders. Parathyroid hormone (PTH) and its derivatives show great potential for wound healing, but corresponding delivery strategies are still limited. Herein, a novel electrospun fiber membrane whose surface is modified with heparin is fabricated to deliver a PTH derivative named parathyroid hormone related peptide-1 (PTHrP-1) for the healing of diabetic wounds.
View Article and Find Full Text PDFJ Nanobiotechnology
December 2024
Bone defect healing is a multi-factorial process involving the inflammatory microenvironment, bone regeneration and the formation of blood vessels, and remains a great challenge in clinical practice. Combined use of three-dimensional (3D)-printed scaffolds and bioactive factors is an emerging strategy for the treatment of bone defects. Scaffolds can be printed using 3D cryogenic printing technology to create a microarchitecture similar to trabecular bone.
View Article and Find Full Text PDFPersistent anti-inflammatory responses are critical for the prevention of peritendinous adhesion. Although modified anti-adhesion barriers have been studied extensively, the immune response induced by the implants and the unclear mechanism limits their application. In this research, the advantage of the multi-functionalities of CA (caffeic acid) is taken to synthesize biodegradable poly (ester urethane) urea elastomers with ester- and carbamate-bonded CA (PEUU-CA).
View Article and Find Full Text PDFRepairing osteochondral defects necessitates the intricate reestablishment of the microenvironment. The cartilage layer consists of a porous gelatin methacryloyl hydrogel (PGelMA) covalently crosslinked with the chondroinductive peptide CK2.1 via a "linker" acrylate-PEG-N-hydroxysuccinimide (AC-PEG-NHS).
View Article and Find Full Text PDFBioact Mater
September 2024
Osteoporosis is majorly caused by an imbalance between osteoclastic and osteogenic niches. Despite the development of nationally recognized first-line anti-osteoporosis drugs, including alendronate (AL), their low bioavailability, poor uptake rate, and dose-related side effects present significant challenges in treatment. This calls for an urgent need for more effective bone-affinity drug delivery systems.
View Article and Find Full Text PDFChronic wounds pose a significant clinical challenge worldwide, which is characterized by impaired tissue regeneration and excessive scar formation due to over-repair. Most studies have focused on developing wound repair materials that either facilitate the healing process or control hyperplastic scars caused by over-repair, respectively. However, there are limited reports on wound materials that can both promote wound healing and prevent scar hyperplasia at the same time.
View Article and Find Full Text PDFPeripheral nerve deficits give rise to motor and sensory impairments within the limb. The clinical restoration of extensive segmental nerve defects through autologous nerve transplantation often encounters challenges such as axonal mismatch and suboptimal functional recovery. These issues may stem from the limited regenerative capacity of proximal axons and the subsequent Wallerian degeneration of distal axons.
View Article and Find Full Text PDFBiomed Mater
February 2024
Bone defects caused by diseases and trauma are considered serious clinical challenges. Autologous and allogeneic transplantations are the most widely used methods to mitigate bone defects. However, transplantation poses risks such as secondary trauma, immune rejection, and disease transmission to patients.
View Article and Find Full Text PDFAdv Healthc Mater
June 2024
Natural blood vessels have completed functions, including elasticity, compliance, and excellent antithrombotic properties because of their mature structure. To replace damaged blood vessels, vascular grafts should perform these functions by simulating the natural vascular structures. Although the structures of natural blood vessels are thoroughly explored, constructing a small-diameter vascular graft that matches the mechanical and biological properties of natural blood vessels remains a challenge.
View Article and Find Full Text PDFFunctional remodeling and prolonged anti-inflammatory responses are both vital for repairing damage in the cardiovascular system. Although these aspects have each been studied extensively alone, attempts to fabricate scaffolds that combine these effects have seen limited success. In this study, we synthesized salvianic acid A (SA, danshensu) blocked biodegradable polyurethane (PCHU-D) and enclosed it within electrospun nanofibers to synthesize a durable immunomodulatory nanofiber niche (DINN), which provided sustained SA release during inflammation.
View Article and Find Full Text PDFCarbohydr Polym
December 2023
Int J Biol Macromol
December 2023
The low patency rate after artificial blood vessel replacement is mainly due to the ineffective use of anticoagulant factors and the mismatch of mechanical compliance after transplantation. Electrospun nanofibers with biomimetic extracellular matrix three-dimensional structure and tunable mechanical strength are excellent carriers for heparin. In this work, we have designed and synthesized a series of biodegradable poly(ester-ether-urethane)ureas (BEPU), following compound with optimized constant concentration of heparin by homogeneous emulsion blending, then spun into the hybrid BEPU/heparin nanofibers tubular graft for replacing rats' abdominal aorta in situ for comprehensive performance evaluation.
View Article and Find Full Text PDFFacilitating regeneration of the tendon-to-bone interface can reduce the risk of postoperative retear after rotator cuff repair. Unfortunately, undesirable inflammatory responses following injury, difficulties in fibrocartilage regeneration, and bone loss in the surrounding area are major contributors to suboptimal tendon-bone healing. Thus, the development of biomaterials capable of regulating macrophage polarization to a favorable phenotype and promoting the synchronous regeneration of the tendon-to-bone interface is currently a top priority.
View Article and Find Full Text PDFFront Bioeng Biotechnol
June 2023
In clinic, controlling acute coagulation after small-diameter vessel grafts transplantation is considered a primary problem. The combination of heparin with high anticoagulant efficiency and polyurethane fiber with good compliance is a good choice for vascular materials. However, blending water-soluble heparin with fat-soluble poly (ester-ether-urethane) urea elastomer (PEEUU) uniformly and preparing nanofibers tubular grafts with uniform morphology is a huge challenge.
View Article and Find Full Text PDFDiabetic wound healing has become a serious healthcare challenge. The high-glucose environment leads to persistent bacterial infection and mitochondrial dysfunction, resulting in chronic inflammation, abnormal vascular function, and tissue necrosis. To solve these issues, we developed a double-network hydrogel, constructed with pluronic F127 diacrylate (F127DA) and hyaluronic acid methacrylate (HAMA), and enhanced by SS31-loaded mesoporous polydopamine nanoparticles (MPDA NPs).
View Article and Find Full Text PDFFront Bioeng Biotechnol
January 2023
Wound repair remains a huge clinical challenge, which can cause bleeding, infection, and patient death. In our current research, a bioactive, injectable, multifunctional composite hydrogel doped with nanospheres was prepared with antibacterial and angiogenesis-promoting functions for the treatment of wounds. Amino groups in ε-polylysine (ε-EPL) undergo dynamic Schiff base reaction cross-linking with oxidized hyaluronic acid (OHA), and F127 exhibits unique temperature sensitivity to form an injectable thermosensitive hydrogel (FHE10), which can form a hydrogel to cover the wound at body temperature.
View Article and Find Full Text PDFFront Bioeng Biotechnol
January 2023
Catheter infection is the most common complication after vascular catheter placement, which seriously threatens the survival of critically ill patients. Although catheters with antibacterial drug coatings have been used, catheter infections have not been effectively resolved. In this research, a SiO nanosphere-coated PTFE catheter (PTFE-SiO) with enhanced antibacterial and excellent mechanical properties was prepared dopamine as a graft bridge.
View Article and Find Full Text PDFSmall-diameter blood vascular transplantation failure is mainly caused by the vascular materials' unreliable hemocompatibility and histocompatibility and the unmatched mechanical properties, which will cause unstable blood flow. How to solve the problems of coagulation and intimal hyperplasia caused by the above factors is formidable in vascular replacement. In this work, we have synthesized poly(ferulic acid) (PFA) and prepared poly(ester-urethane)urea (PEUU)/silk fibroin (SF)/poly(ferulic acid) (PFA) hybrid nanofibers vascular graft (PSPG) by random electrospinning and post-double network bond crosslinking for process optimization.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
December 2022
The main reason for the failure of artificial blood vessel transplantation is the lack of mechanically matched materials with excellent blood compatibility. The electrospun biodegradable polyurethane (BPU) fibers with micro to nanoscale topography and high porosity similar to the natural extracellular matrix (ECM) is one of the most suitable options for vascular graft. In our recent study, we prepared a series of PCL-based BPU fibers by combining two-step solution polymerization and electrospinning.
View Article and Find Full Text PDF