A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Highly Bioadaptable Hybrid Conduits with Spatially Bidirectional Structure for Precision Nerve Fiber Regeneration via Gene Therapy. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Peripheral nerve deficits give rise to motor and sensory impairments within the limb. The clinical restoration of extensive segmental nerve defects through autologous nerve transplantation often encounters challenges such as axonal mismatch and suboptimal functional recovery. These issues may stem from the limited regenerative capacity of proximal axons and the subsequent Wallerian degeneration of distal axons. To achieve the integration of sensory and motor functions, a spatially differential plasmid DNA (pDNA) dual-delivery nanohydrogel conduit scaffold is devised. This innovative scaffold facilitates the localized administration of the transforming growth factor β (TGF-β) gene in the proximal region to accelerate nerve regeneration, while simultaneously delivering nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2) to the distal region to mitigate Wallerian degeneration. By promoting autonomous and selective alignment of nerve fiber gap sutures via structure design, the approach aims to achieve a harmonious unification of nerve regeneration, neuromotor function, and sensory recovery. It is anticipated that this groundbreaking technology will establish a robust platform for gene delivery in tissue engineering.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11109652PMC
http://dx.doi.org/10.1002/advs.202309306DOI Listing

Publication Analysis

Top Keywords

nerve fiber
8
wallerian degeneration
8
nerve regeneration
8
nerve
7
highly bioadaptable
4
bioadaptable hybrid
4
hybrid conduits
4
conduits spatially
4
spatially bidirectional
4
bidirectional structure
4

Similar Publications