Poly(ferulic acid)-hybrid nanofibers for reducing thrombosis and restraining intimal hyperplasia in vascular tissue engineering.

Biomater Adv

Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Rd., Shanghai 200127, PR China. Electronic address:

Published: March 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Small-diameter blood vascular transplantation failure is mainly caused by the vascular materials' unreliable hemocompatibility and histocompatibility and the unmatched mechanical properties, which will cause unstable blood flow. How to solve the problems of coagulation and intimal hyperplasia caused by the above factors is formidable in vascular replacement. In this work, we have synthesized poly(ferulic acid) (PFA) and prepared poly(ester-urethane)urea (PEUU)/silk fibroin (SF)/poly(ferulic acid) (PFA) hybrid nanofibers vascular graft (PSPG) by random electrospinning and post-double network bond crosslinking for process optimization. The results in vitro demonstrated that the graft is of significant anti-oxidation, matched mechanical properties, reliable cytocompatibility, and blood compatibility. Replacing resected rat abdominal aorta and rabbit carotid artery models with PSPG vascular grafts indicated that the grafts are capable of homogeneous hybrid PFA significantly promoted the stabilization of endothelial cells and the ingrowth of smooth muscle cells, meanwhile stabilizing the immune microenvironment. This research demonstrates the PSPG vascular graft with substantial patency, indicating their potential for injured vascular healing.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioadv.2023.213278DOI Listing

Publication Analysis

Top Keywords

intimal hyperplasia
8
vascular
8
mechanical properties
8
acid pfa
8
vascular graft
8
pspg vascular
8
polyferulic acid-hybrid
4
acid-hybrid nanofibers
4
nanofibers reducing
4
reducing thrombosis
4

Similar Publications

Heparin-loaded silk fibroin microparticles/bacterial nanocellulose (Hep@SFMPs/BNC) conduits for application as small-caliber artificial blood vessels.

Carbohydr Polym

November 2025

State Key Laboratory of Advanced Fiber Materials (Donghua University), Shanghai 201620, China; College of Biological Science and Medical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China; Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Med

Small-caliber artificial blood vessels are highly demanded and face challenges, including thrombosis and intimal hyperplasia. The excellent properties of bacterial nanocellulose (BNC) make it an excellent material for preparing artificial blood vessels. Heparin (Hep)-loaded silk fibroin microparticles (SFMPs) were synthesized in situ within the conduit wall via liquid pressure injection and phase separation, aiming to improve BNC's anticoagulant properties.

View Article and Find Full Text PDF

SCAP Interacts with Trim27 to Promote Vascular Neointimal Hyperplasia by Regulating the Stability and Ubiquitination of IκBα.

Aging Dis

August 2025

Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and Glucose, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University

Pathological vascular remodeling and intimal hyperplasia after vascular injury are representative pathological processes in age-associated vascular diseases. Previous data from our laboratory have indicated that sterol regulatory element-binding protein (SREBP) cleavage-activating protein (SCAP) contributes to physiological angiogenesis during embryonic development. However, the role of SCAP in neointima formation is not fully understood.

View Article and Find Full Text PDF

Objective: This study performed untargeted LC-MS metabolomics on venous tissues from maintenance hemodialysis patients undergoing arteriovenous fistula (AVF) reconstruction surgery.

Methods: A total of six stenotic and six non-stenotic AVF tissues were analyzed. Paired samples were collected from stenotic AVF segments and non-stenotic regions (control group).

View Article and Find Full Text PDF

Intimal hyperplasia (IH) compromises the patency of arteriovenous fistula (AVF) vascular access in patients with end-stage kidney disease. Uncontrolled cell proliferation and migration, driven by inflammation, shear stress and surgery, are well-known triggers in IH. Recently, microRNAs (miRNAs) have emerged as regulators of core mechanisms in cardiovascular diseases and as potential markers of IH.

View Article and Find Full Text PDF

Introduction: The principal challenge in maintaining functional vascular access for hemodialysis is managing outflow stenoses, which are primarily caused by intimal hyperplasia. These stenoses are the leading cause of access dysfunction, leading to inadequate dialysis, increased morbidity, and frequent reinterventions. While drug-coated balloons (DCBs) have emerged as a promising solution by delivering antiproliferative agents to reduce restenosis rates, further clinical insights are needed to establish their role in vascular access management.

View Article and Find Full Text PDF