Publications by authors named "Carmen Ciavarella"

Intimal hyperplasia (IH) compromises the patency of arteriovenous fistula (AVF) vascular access in patients with end-stage kidney disease. Uncontrolled cell proliferation and migration, driven by inflammation, shear stress and surgery, are well-known triggers in IH. Recently, microRNAs (miRNAs) have emerged as regulators of core mechanisms in cardiovascular diseases and as potential markers of IH.

View Article and Find Full Text PDF

Endothelial dysfunction triggers atherosclerosis pathogenesis. This study aimed at developing a 3D scaffold model able to reproduce in vitro the human vascular intima and study the endothelial damage induced by oxidative low-density lipoproteins (ox-LDLs) and shear stress. (2) Methods: Three-dimensional sandwich-like scaffolds were fabricated using electrospinning technology, functionalized with type I collagen and laminin, and subsequently coated with methacrylated gelatin hydrogel (GelMa) to achieve the final composite structure.

View Article and Find Full Text PDF

: Tears are a promising source of biomarkers reflecting both ocular and systemic conditions. However, small sample volumes and low cell yields pose technical challenges in analytical workflows. This study aimed to evaluate the feasibility of quantifying total cell counts and characterizing HLA-DR and CD3 expression in tear-derived cells using an automated cell counter with fluorescence detection (Countess 3 FL).

View Article and Find Full Text PDF

Recent research has highlighted the critical role of microbiota in organ transplant outcomes, particularly in the gut. However, the impact of ocular surface microbiota (OSM) on corneal transplantation remains largely unexplored. This piece examines the potential connection between OSM imbalances and corneal graftoutcomes, suggesting that microbial shifts could influence immune responses and transplant success.

View Article and Find Full Text PDF

Human tear analysis is gaining increasing attention as a non-invasive tool for several applications such as proteomics and biomarker identification in various diseases, including cancer. The choice of the correct sampling method determines the result of the analysis. In this study, we developed and validated a robust method for tear protein quantification using ultra-high-performance liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS).

View Article and Find Full Text PDF

Human arteries show structural and functional peculiarities according to the nutrient and oxygen needs of a specific vascular district. This architectural heterogeneity is reflected in the pathological setting of cardiovascular diseases (CVDs). Indeed, the responsiveness to cardiovascular risk factors, and the morphological and molecular patterns are discriminating factors among CVDs affecting different vascular beds.

View Article and Find Full Text PDF

Background: Thrombotic microangiopathy is a severe and potentially life-threatening condition inducing severe endothelial injury in many organs, particularly native and transplanted kidneys. Current pathological studies by our group have identified the use of Caveolin-1 immunohistochemistry as a potential marker of endothelial damage and progression degree of thrombotic microangiopathy. The aim of the present work was to evaluate Caveolin-1 as a marker of severity in thrombotic microangiopathy kidney disease, according to the ultrastructural progression of the disease evaluated by transmission electron microscopy.

View Article and Find Full Text PDF

The failure of arteriovenous fistulas (AVFs) following intimal hyperplasia (IH) increases morbidity and mortality rates in patients undergoing hemodialysis for chronic kidney disease. The peroxisome-proliferator associated receptor (PPAR-γ) may be a therapeutic target in IH regulation. In the present study, we investigated PPAR-γ expression and tested the effect of pioglitazone, a PPAR-γ agonist, in different cell types involved in IH.

View Article and Find Full Text PDF

The aim of this study was to optimize a coculture in vitro model established between the human Müller glial cells and human umbilical vein endothelial cells, mimicking the inner blood-retinal barrier, and to explore its resistance to damage induced by oxidative stress. A spontaneously immortalized human Müller cell line MIO-M1 and human umbilical vein endothelial cells (HUVEC) were plated together at a density ratio 1:1 and maintained up to the 8th passage (p8). The MIO-M1/HUVECs p1 through p8 were treated with increasing concentrations (range 200-800 μM) of H O to evaluate oxidative stress induced damage and comparing data with single cell cultures.

View Article and Find Full Text PDF

Blood-based preparations are used in clinical practice for the treatment of several eye disorders. The aim of this study is to analyze the effect of freeze-drying blood-based preparations on the levels of growth factors and wound healing behaviors in an in vitro model. Platelet-rich plasma (PRP) and serum (S) preparations from the same Cord Blood (CB) sample, prepared in both fresh frozen (FF) and freeze-dried (FD) forms (and then reconstituted), were analyzed for EGF and BDNF content (ELISA Quantikine kit).

View Article and Find Full Text PDF

The aim of the present study was to evaluate the homeostasis and trophism of liver sinusoidal endothelial cells (LSECs) in vivo in different stages of liver graft donation, in order to understand the effects of graft ischemia and perfusion on LSEC activity in liver grafts. Special attention was paid to grafts that underwent hypothermic oxygenated perfusion (HOPE). Forty-seven donors were prospectively enrolled, and two distinct biopsies were performed in each case: one allocation biopsy (at the stage of organ allocation) and one post-perfusion biopsy, performed after graft implant in the recipients.

View Article and Find Full Text PDF

Mesenchymal stromal/stem cells (MSCs) have been identified in multiple human tissues, including the vascular wall. High proliferative potential, multilineage, and immunomodulatory properties make vascular MSCs promising candidates for regenerative medicine. Indeed, their location is strategic for controlling vascular and extra-vascular tissue homeostasis.

View Article and Find Full Text PDF

Background: Synthetic vascular graft calcification is a serious complication of graft placement. Here, we analysed migration and osteogenic genes of human umbilical vein endothelial cells (HUVEC) cultured with a poly-L-lactic acid (PLLA) electrospun mat. The role of epigallo-catechin-3-gallate (EGCG) in pathogenic processes involving HUVEC and peripheral blood mononuclear cells (PBMCs) was also tested.

View Article and Find Full Text PDF

The ability to form spheroids under non-adherent conditions is a well-known property of human mesenchymal stem cells (hMSCs), in addition to stemness and multilineage differentiation features. In the present study, we tested the ability of hMSCs isolated from the vascular wall (hVW-MSCs) to grow as spheres, and provide a characterization of this 3D model. hVW-MSCs were isolated from femoral arteries through enzymatic digestion.

View Article and Find Full Text PDF

We report the case of a 77-year-old woman affected by coronavirus disease-19 (COVID-19) who developed an occlusive arterial disease of the lower limb requiring a left leg amputation. We studied the mechanisms of vascular damage by SARS-CoV-2 by means of a comprehensive multi-technique in situ analysis on the diseased popliteal arterial district, including immunohistochemistry (IHC), transmission electron microscopy (TEM) and miRNA analysis. At histological analyses, we observed a lymphocytic inflammatory infiltrate, oedema and endothelialitis of adventitial vasa vasorum while the media was normal and the intima had only minor changes.

View Article and Find Full Text PDF

Atherosclerosis may starts early in life and each artery has peculiar characteristics likely affecting atherogenesis. The primary objective of the work was to underpin the microRNA (miR)-profiling differences in human normal femoral, abdominal aortic, and carotid arteries. The secondary aim was to investigate if those identified miRs, differently expressed in normal conditions, may also have a role in atherosclerotic arteries at adult ages.

View Article and Find Full Text PDF

Background: Arteriovenous fistula (AVF) for hemodialysis integrates outward remodeling with vessel wall thickening in response to drastic hemodynamic changes. Aim of this study is to determine the role of Ki67, a well-established proliferative marker, related to AVF, and its relationship with time-dependent histological morphologic changes.

Materials And Methods: All patients were enrolled in 1 year and stratified in two groups: (A) pre-dialysis patients submitted to first AVF and (B) patients submitted to revision of AVF.

View Article and Find Full Text PDF

Bone development-related genes are enriched in healthy femoral arteries, which are more prone to calcification, as documented by the predominance of fibrocalcific plaques at the femoral location. We undertook a prospective histological study on the presence of calcifications in normal femoral arteries collected from donors. Since endothelial-to-mesenchymal transition (EndMT) participates in vascular remodeling, immunohistochemical (IHC) and molecular markers of EndMT and chondro-osteogenic differentiation were assessed.

View Article and Find Full Text PDF

The endothelial to mesenchymal transition (End-MT) can be associated with vascular calcification, by providing mesengenic progenitors. In this study, we investigated a link between End-MT and the osteogenic process and explored the involvement of miR-30a-5p and miR-30d as potential regulators of these processes. End-MT was induced in Human Umbilical Vein Endothelial Cells (HUVEC) through transforming growth factor-β1 (TGF-β1), TGFβ-3 and tumor necrosis factor-α (TNF-α), for 24 h and 6 days.

View Article and Find Full Text PDF

Oxidative stress and inflammation determine retinal ganglion cell degeneration, leading to retinal impairment and vision loss. Müller glial cells regulate retinal repair under injury, through gliosis. Meanwhile, reactive gliosis can turn in pathological effects, contributing to neurodegeneration.

View Article and Find Full Text PDF

Atherosclerosis is considered a chronic inflammatory disease of arteries associated with the aging process. Many risk factors have been identified and they are mainly related to life-styles, gene-environment interactions and socioeconomic status. Carotid and coronary artery diseases are the two major atherosclerotic conditions, being the primary cause of stroke and heart attack, respectively.

View Article and Find Full Text PDF

The cytokine storm is an abnormal production of inflammatory cytokines, due to the over-activation of the innate immune response. This mechanism has been recognized as a critical mediator of influenza-induced lung disease, and it could be pivotal for COVID-19 infections. Thus, an immunomodulatory approach targeting the over-production of cytokines could be proposed for viral aggressive pulmonary disease treatment.

View Article and Find Full Text PDF

Background: Abdominal aortic aneurysm (AAA) is a progressive dilation of the aortic wall, determined by the unbalanced activity of matrix metalloproteinase (MMPs). In vitro and in vivo studies support the pivotal role of MMP-9 to AAA pathogenesis. In our experience, we elucidated the expression of MMP-9 in an ex vivo model of human mesenchymal stem cells isolated from AAA specimen (AAA-MSCs).

View Article and Find Full Text PDF

Objectives: The purpose of this review is to briefly outline current scientific evidence on the potential role of tear analysis and ocular surface evaluation in diagnosis and monitoring of neurodegenerative diseases, especially Alzheimer disease, Parkinson disease, and glaucoma.

Methods: A systematic computerized search in the electronic databases PubMed, MEDLINE, and the Cochrane Collaborations was conducted to find eligible articles which their main topic was to investigate the tear and ocular surface in neurodegenerative diseases. After a first screening of titles and abstracts and a full-text review, 26 articles met the inclusion criteria (1 about the neurodegenerative diseases, 3 about the Alzheimer disease, 11 about the Parkinson disease, 11 about glaucoma, and 1 about amyotrophic lateral sclerosis).

View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) share many properties with other tissue stromal cells, including cell morphology, immunophenotype, differentiation and immunologic properties. In this study, we compared the immunophenotype and the differentiation potential of human vascular wall mesenchymal stem cells (hVW-MSCs) with those of human dermal fibroblasts and myofibroblasts. Cell morphology and surface markers were evaluated by immunofluorescence and flow cytometry; functional assays for immunomodulation, angiogenesis, adipogenesis and osteogenesis were performed, together with the mRNA analysis of the critical differentiation genes.

View Article and Find Full Text PDF