Polarization-entangled photon pairs are essential sources for photonic quantum information processing. However, generating entangled photon pairs with large detuning via spontaneous parametric down-conversion (SPDC) often requires complex configurations to compensate for phase matching. Here, we propose a simple and efficient scheme to generate polarization-entangled photon pairs based on type-0 SPDC in a thin-film lithium niobate waveguide with a single poling period.
View Article and Find Full Text PDFAs a counterintuitive phenomenon, optical pulling of an object has been attracting increasing attention in recent years, owing to its intriguing underlying physics of light momentum transfer and potential for multi-directional manipulation. Due to the difficulty in engineering wave vectors for long-range optical pulling with a single beam, to date, the pulling range of an object is experimentally limited to hundreds of micrometres. Here, we demonstrate ultra-long-range optical pulling of a micro-droplet with an optical nanofibre based on the Minkowski-photon-momentum engineering.
View Article and Find Full Text PDFEnhancement and active control of light-matter interactions at the atomic scale is important for developing next-generation nanophotonic and quantum optical devices. Here, we demonstrate electric control of excitonic strong coupling and electroluminescence (EL) by integrating a semiconductor monolayer into a nanometer gap of single electrically driven nanocube-on-mirror plasmonic nanocavities, which provide unmatched optical and electrical confinement. In particular, in a strongly coupled system of nanocavity plasmons and tungsten diselenide (WSe) excitons, an ultrastrong electric field generated in the nanocavity gap enables reversible modulation of the Rabi splitting between ~108 and 102 milli-electron volts with a bias of only 2.
View Article and Find Full Text PDFMaterials usually fracture before reaching their ideal strength limits. Meanwhile, materials with high strength generally have poor ductility, and vice versa. For example, gold with the conventional face-centered cubic (FCC) phase is highly ductile while the yield strength (~10MPa) is significantly lower than its ideal theoretical limit.
View Article and Find Full Text PDFSmall organic molecules are essential building blocks of our universe, from cosmic dust to planetary surfaces to life. Compared to their well-known gaseous and liquid forms that have been extensively studied, small organic molecules in the form of ice at low temperatures receive much less attention. Here, we show that supercooled small-molecule droplets can be drawn into highly uniform amorphous ice microfibers with lengths up to 5 cm and diameters down to 200 nm.
View Article and Find Full Text PDFMeasurement of masses of microscale objects or weak force with ultrahigh sensitivity (down to nanogram/piconewton level) and compact configuration is highly desired for fundamental research and applications in various disciplines. Here, by using freestanding gold flakes with high reflectivity (≈98% at 980 nm) as the sample tray and silica microfibers with extremely low spring constant (≈0.05 mN m) as the cantilever beams, miniature capacitive balances are reported with piconewton-level detection limit (picobalances) and reliable radiation force-based calibration.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Gold films with a single-crystalline structure and an ultrasmooth surface are highly desired for fabricating plasmonic nanostructures with low loss. Here, we report a recrystallization-based approach to synthesize on-substrate single-crystalline gold flakes with high efficiency. By dissolving a multicrystalline gold film with tetraoctylammonium bromide at ∼140 °C and then recrystallizing at ∼160 °C for 2 h, high-density (>1000 pieces per cm) gold flakes can be obtained directly on a substrate, which have a thin thickness concentrated around 30 nm and a maximum lateral size up to 0.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Tactile sensors with capability of multiaxial force perception play a vital role in robotics and human-machine interfaces. Flexible optical waveguide sensors have been an emerging paradigm in tactile sensing due to their high sensitivity, fast response, and antielectromagnetic interference. Herein, a flexible multiaxial force sensor enabled by U-shaped optical micro/nanofibers (MNFs) is reported.
View Article and Find Full Text PDFMiniature acoustic sensors with high sensitivity are highly desired for applications in medical photoacoustic imaging, acoustic communications and industrial nondestructive testing. However, conventional acoustic sensors based on piezoelectric, piezoresistive and capacitive detectors usually require a large element size on a millimeter to centimeter scale to achieve a high sensitivity, greatly limiting their spatial resolution and the application in space-confined sensing scenarios. Herein, by using single-crystal two-dimensional gold flakes (2DGFs) as the sensing diaphragm of an extrinsic Fabry-Perot interferometer on a fiber tip, we demonstrate a miniature optical acoustic sensor with high sensitivity.
View Article and Find Full Text PDFLight Sci Appl
June 2024
Three-dimensional (3D) glass chips are promising waveguide platforms for building hybrid 3D photonic circuits due to their 3D topological capabilities, large transparent windows, and low coupling dispersion. At present, the key challenge in scaling down a benchtop optical system to a glass chip is the lack of precise methods for controlling the mode field and optical coupling of 3D waveguide circuits. Here, we propose an overlap-controlled multi-scan (OCMS) method based on laser-direct lithography that allows customizing the refractive index profile of 3D waveguides with high spatial precision in a variety of glasses.
View Article and Find Full Text PDFTwo-dimensional single crystal metals, in which the behavior of highly confined optical modes is intertwined with quantum phenomena, are highly sought after for next-generation technologies. Here, we report large area (>10 μm), single crystal two-dimensional gold flakes (2DGFs) with thicknesses down to a single nanometer level, employing an atomic-level precision chemical etching approach. The decrease of the thickness down to such scales leads to the quantization of the electronic states, endowing 2DGFs with quantum-confinement-augmented optical nonlinearity, particularly leading to more than two orders of magnitude enhancement in harmonic generation compared with their thick polycrystalline counterparts.
View Article and Find Full Text PDFAltern Ther Health Med
December 2024
Background: Hypertriglyceridemia-induced acute pancreatitis (HTG-AP) is an increasingly recognized and potentially severe form of acute pancreatitis. The effective management of HTG-AP is critical due to its association with significant morbidity and mortality. HTG-AP poses a considerable burden on affected individuals and healthcare systems.
View Article and Find Full Text PDFThe development of neuromorphic visual systems has recently gained momentum due to their potential in areas such as autonomous vehicles and robotics. However, current machine visual systems based on silicon technology usually contain photosensor arrays, format conversion, memory and processing modules. As a result, the redundant data shuttling between each unit, resulting in large latency and high-power consumption, seriously limits the performance of neuromorphic vision chips.
View Article and Find Full Text PDFDispersion management is vital for nonlinear optics and ultrafast lasers. We demonstrate that group velocity dispersion (GVD, or second-order dispersion, i.e.
View Article and Find Full Text PDFAdv Sci (Weinh)
February 2024
Narrow bandgap materials have garnered significant attention within the field of broadband photodetection. However, the performance is impeded by diminished absorption near the bandgap, resulting in a rapid decline in photoresponsivity within the mid-wave infrared (MWIR) and long-wave infrared (LWIR) regions. Furthermore, they mostly worked in cryogenic temperature.
View Article and Find Full Text PDFSingle-nanoparticle detection has received tremendous interest due to its significance in fundamental physics and biological applications. Here, we demonstrate an optical nanofibre-enabled microfluidic sensor for the detection and sizing of nanoparticles. Benefitting from the strong evanescent field outside the nanofibre, a nanoparticle close to the nanofibre can scatter a portion of the field energy to the environment, resulting in a decrease in the transmitted intensity of the nanofibre.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2023
The detection of subtle temperature variation plays an important role in many applications, including proximity sensing in robotics, temperature measurements in microfluidics, and tumor monitoring in healthcare. Herein, a flexible miniaturized optical temperature sensor is fabricated by embedding twisted micro/nanofibers in a thin layer of polydimethylsiloxane. Enabled by the dramatic change of the coupling ratio under subtle temperature variation, the sensor exhibits an ultrahigh sensitivity (-30 nm/°C) and high resolution (0.
View Article and Find Full Text PDFACS Appl Mater Interfaces
July 2023
Ultrafast interfacing of electrical and optical signals at the nanoscale is highly desired for on-chip applications including optical interconnects and data processing devices. Here, we report electrically driven nanoscale optical sources based on metal-insulator-graphene tunnel junctions (MIG-TJs), featuring waveguided output with broadband spectral characteristics. Electrically driven inelastic tunneling in a MIG-TJ, realized by integrating a silver nanowire with graphene, provides broadband excitation of plasmonic modes in the junction with propagation lengths of several micrometers (∼10 times larger than that for metal-insulator-metal junctions), which therefore propagate toward the junction edge with low loss and couple to the nanowire waveguide with an efficiency of ∼70% (∼1000 times higher than that for metal-insulator-metal junctions).
View Article and Find Full Text PDFLight Sci Appl
April 2023
As miniature fibre-optic platforms, micro/nanofibres (MNFs) taper-drawn from silica fibres have been widely studied for applications from optical sensing, nonlinear optics to optomechanics and atom optics. While continuous-wave (CW) optical waveguiding is frequently adopted, so far almost all MNFs are operated in low-power region (e.g.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2022
Interface interactions in 2D vertically stacked heterostructures play an important role in optoelectronic applications, and photodetectors based on graphene/InSe heterostructures show promising performance nowadays. However, nonlinear optical property studies based on the graphene/InSe heterostructure are insufficient. Here, we fabricated a graphene/InSe heterostructure by mechanical exfoliation and investigated the optically induced charge transfer between graphene/InSe heterostructures by taking photoluminescence and pump-probe measurements.
View Article and Find Full Text PDFMolecular plasmonics, the area which deals with the interactions between surface plasmons and molecules, has received enormous interest in fundamental research and found numerous technological applications. Plasmonic metamaterials, which offer rich opportunities to control the light intensity, field polarization, and local density of electromagnetic states on subwavelength scales, provide a versatile platform to enhance and tune light-molecule interactions. A variety of applications, including spontaneous emission enhancement, optical modulation, optical sensing, and photoactuated nanochemistry, have been reported by exploiting molecular interactions with plasmonic metamaterials.
View Article and Find Full Text PDFLaser based on single plasmonic nanoparticle can provide optical frequency radiation far beyond the diffraction limit and is one of the ultimate goals of nanolasers, yet it remains a challenge to be realized because of the inherently high Ohmic loss. Here, we report the direct observation of lasing in microfiber-coupled single plasmonic nanoparticles enabled by strong mode coupling. We show that, by strongly coupling a gold nanorod (GNR) with the whispering gallery cavity of a dye-doped polymer microfiber (with diameter down to 2.
View Article and Find Full Text PDFWe proposed a photonic approach to a lasing mode supported by low-loss oscillation of polarized bound electrons in an active nano-slit-waveguide cavity, which circumvents the confinement-loss trade-off of nanoplasmonics, and offers an optical confinement down to sub-1-nm level with a peak-to-background ratio of ∼30 dB. Experimentally, the extremely confined lasing field is realized as the dominant peak of a TE_{0}-like lasing mode around 720-nm wavelength, in 1-nm-level width slit-waveguide cavities in coupled CdSe nanowire pairs. The measured lasing characteristics agree well with the theoretical calculations.
View Article and Find Full Text PDFOptical nanofiber-based single-photon source has attracted considerable interest due to its property of seamless integration with a single-mode fiber. With nanostructure engraved in the nanofiber, the single-photon collection efficiency can be greatly boosted with enhanced interaction between the single quantum emitter and the guided light. However, the prerequisite nanofabrication processes introduce complexities and extra loss.
View Article and Find Full Text PDF