Publications by authors named "Jefferson Zhe Liu"

Advancing next-generation high-density data storage and post-Moore computing technologies requires the engineering of higher-order multistate ferroelectric transitions. In this study, we demonstrate an octuple-state sliding ladder ferroelectric behaviour in bilayer GeSe/SnS van der Waals heterostructures. This behaviour arises from compression-modulated interlayer sliding, which induces a series of multi-step phase transitions.

View Article and Find Full Text PDF

Ammonia holds paramount importance as a fundamental chemical commodity for large-scale production of fertilisers and hydrogen carriers. The conventional Haber-Bosch process relies heavily on fossil fuels, making ammonia synthesis a significant contributor to greenhouse gas emissions. Here, we show a carbon-negative ammonia synthesis process that not only produces ammonia from the air but also directly captures the atmospheric CO (DAC).

View Article and Find Full Text PDF

Membranes with precise ion transport behaviors are regarded as an alternative for lithium (Li) extraction from water streams. Current membranes demonstrate limited viability due to the lack of efficient Li-selective architectures. We propose an electric field-assisted ion control hypothesis in reinforcing ultraefficient Li-selective membranes, in which an ionized zeolitic imidazolate framework layer (Q-PEI@ZIF) is constructed via polyethylenimine (PEI) in situ confinement conversion and subsequent quaternization of 2,3-epoxypropyl trimethyl ammonium chloride.

View Article and Find Full Text PDF

Systems that sequentially capture and upgrade CO from air to fuels/fuel-intermediates, such as syngas and ethylene, rely on an energy-intensive CO release process. Electrified reactive capture systems transform CO obtained directly from carbonate capture liquid into products. Previous reactive capture systems show a decline in Faradaic efficiencies (FE) at current densities above 200 mA/cm.

View Article and Find Full Text PDF

Two-dimensionalization unlocks the unique and superior physical properties of materials, but extending it to nonlayered crystals is challenging. Using density functional theory and machine learning, we unveil a universal rule for creating stable two-dimensional counterparts of traditional high-performance III-V semiconductors, i.e.

View Article and Find Full Text PDF

Electrolyte-filled nanoporous electrodes with fast-charging capability are critical for advanced energy storage and iontronic devices. However, experiments and simulations consistently show that increasing electrode thickness degrades performance by limiting ion access to effective electrode/electrolyte interfaces, especially under fast-charging conditions. While often attributed to sluggish ion transport, the underlying mechanisms and the quantitative link between thickness and performance remain unclear due to complex pore structures and nanoconfined ion dynamics.

View Article and Find Full Text PDF

Molecule additives emerge as a highly effective strategy for enhancing the performance and stability of perovskite solar cells (PSCs), owing to their potential in suppressing intrinsic defects in perovskite. However, the influence of atomic configuration and electronic properties of additives on their passivation performance receives little attention. Here, two benzenesulfonamide derivatives, 4-carboxybenzenesulfonamide (CO-BSA) and 4-cyanobenzenesulfonamide (CN-BSA) are investigated, examining the effects of molecules with different electron‑acceptor functional groups on the defect passivation of perovskite layer and the photovoltaic properties of perovskite solar cells (PSCs.

View Article and Find Full Text PDF

Electrosorption, the accumulation of electrolyte ions at charged interfaces, is a common phenomenon across various electrochemical systems. Its impact is particularly pronounced in nanoporous electrodes owing to their high surface-to-volume ratios. Although electrosorption alters the ion distribution at the electrode-electrolyte interface through the formation of an electrical double layer, the effects of electrosorbed ions on the charge storage dynamics in nanoporous electrodes and their ability to improve charging processes have often been overlooked.

View Article and Find Full Text PDF

Ferroelectric domain walls (FDWs) exhibit exotic structural and electronic properties, positioning them as a promising functional element for next-generation nanoelectronics. However, achieving the deterministic creation of FDWs with nanoscale precision and controlled polarization of domains remains a substantial challenge for the scalable FDW-device fabrication and circuit design. Here, we demonstrate a strategy for FDW engineering by tailoring the interfacial electrostatic profile.

View Article and Find Full Text PDF

Wearable biosensors are gaining significant attention for their ability to monitor vital health signs remotely, continuously, and non-invasively. Nanomaterials offer transformative potential for next-generation soft wearable sensors, enabling seamless skin integration with enhanced comfort and data accuracy. Wet chemistry provides a scalable, cost-effective approach to producing nanomaterials, transforming rigid sensors into soft, flexible, and stretchable devices for broader wearable applications.

View Article and Find Full Text PDF

Understanding the hydrogenation behavior of *NO during electrochemical nitrate reduction reaction (NORR) is essential for designing catalysts with high selectivity toward ammonia (NH) and valuable intermediates like hydroxylamine. Spinel cobalt oxides (CoO) are promising NORR electrocatalysts, yet the exact *NO hydrogenation mechanism remains unclear. Here, we integrate theoretical calculations and systematic experiments to reveal that the hydrogenation pathway is dictated by the coordination environment, which can be tuned via crystal facet engineering.

View Article and Find Full Text PDF

van der Waals antiferromagnetic insulators are emerging as promising candidates for spintronics and quantum computing due to their unique magnetic properties. However, detecting antiferromagnetism at the atomic scale remains challenging due to compensated spin order. In this study, we present a novel approach to observe the antiferromagnetic proximity effect in FePS/Pt heterostructures.

View Article and Find Full Text PDF

The ability of biological ion channels to respond to environmental stimuli, regulate ion permeation rates, and selectively transport specific ions is essential for sustaining physiological functions and holds immense potential for various practical applications. In this study, we report a highly selective ion separation membrane capable of responding to ionic stimuli, thereby regulating the permeation rate of the target ions. This membrane is constructed from two-dimensional MXene nanosheets functionalized with γ-poly(glutamic acid) (γ-PGA) molecules.

View Article and Find Full Text PDF

Ferroelectric topological structures in two-dimensional (2D) materials have emerged as a promising platform for exploring novel topological electronic properties and applications. To date, the reported topological structures have been limited to single-phase 2D materials with spatially varying polarization distributions. Many 2D materials exhibit multiple ferroelectric phases; however, topological structures that combine these phases remain largely unexplored.

View Article and Find Full Text PDF

Two-dimensional-material-based memristor arrays hold promise for data-centric applications such as artificial intelligence and big data. However, accessing individual memristor cells and effectively controlling sneak current paths remain challenging. Here, we propose a van der Waals engineering approach to create one-transistor-one-memristor (1T1M) cells by assembling the emerging two-dimensional ferroelectric CuCrPS with MoS and -BN.

View Article and Find Full Text PDF

Radioactive molecular iodine (I) is a critical volatile pollutant generated in nuclear energy applications, necessitating sensors that rapidly and selectively detect low concentrations of I vapor to protect human health and the environment. In this study, we design and prepare a three-component sensing material comprising reduced graphene oxide (rGO) as the substrate, silver iodide (AgI) particles as active sites, and polystyrene sulfonate as an additive. The AgI particles enable reversible adsorption and conversion of I molecules into polyiodides, inducing substantial charge density variation in rGO.

View Article and Find Full Text PDF

Directional wetting of liquids on solid surfaces is crucial for numerous applications. However, the impact of physical modifications on near-superhydrophilic cellulose has received limited attention as it is widely considered unfeasible. In this study, we present a previously unreported and simple but effective mechanism of directional wetting induced purely by physical modifications on pristine cellulose surfaces.

View Article and Find Full Text PDF

Hexagonal rings are critical to the properties of many nanomaterials by determining their mechanical strength, thermal stability, and electrical conductivity, therefore this kind of structure has been intensively concerned in computational studies. However, existing molecular dynamics (MD) simulation tools lack specialized functions for identifying and characterizing them. To address this gap, we developed HexagonRingCalculator, a tool for identifying hexagonal rings and calculating their geometric properties, including bond lengths, ring area, and circularity, directly from MD simulation data.

View Article and Find Full Text PDF

Pairing the positive and negative electrodes with their individual dynamic characteristics at a realistic cell level is essential to the practical optimal design of electrochemical energy storage devices. However, the complex relationship between the performance data measured for individual electrodes and the two-electrode cells used in practice often makes an optimal pairing experimentally challenging. Taking advantage of the developed tunable graphene-based electrodes with controllable structure, experiments with machine learning are successfully united to generate a large pool of capacitance data for graphene-based electrode materials with varied slit pore sizes, thicknesses, and charging rates and numerically pair them into different combinations for two-electrode cells.

View Article and Find Full Text PDF

Bismuth-based electrocatalysts are effective for carbon dioxide (CO) reduction to formate. However, at room temperature, these materials are only available in solid state, which inevitably suffers from surface deactivation, declining current densities, and Faradaic efficiencies. Here, the formation of a liquid bismuth catalyst on the liquid gallium surface at ambient conditions is shown as its exceptional performance in the electrochemical reduction of CO (i.

View Article and Find Full Text PDF

Metal-organic framework (MOF) membranes with high ion selectivity are highly desirable for direct lithium-ion (Li) separation from industrial brines. However, very few MOF membranes can efficiently separate Li from brines of high Mg/Li concentration ratios and keep stable in ultrahigh Mg-concentrated brines. This work reports a type of MOF-channel membranes (MOFCMs) by growing UiO-66-(SH) into the nanochannels of polymer substrates to improve the efficiency of MOF membranes for challenging Li extraction.

View Article and Find Full Text PDF

Hydrothermal synthesis based upon the use of Al as the dopant and/or ethanol as the solvent is effective in promoting the growth of hematite into nanoplates rich in the (001) surface, which is highly active for a broad range of catalytic applications. However, the underpinning mechanism for the flattening of hematite crystals is still poorly comprehended. To close this knowledge gap, in this work, we have attempted intensive computational modelling to construct a binary phase diagram for FeO-AlO under typical hydrothermal conditions, as well as to quantify the surface energy of hematite crystal upon coverage with Al and ethanol molecules.

View Article and Find Full Text PDF

Measuring muscle fatigue involves assessing various components within the motor system. While subjective and sensor-based measures have been proposed, a comprehensive comparison of these assessment measures is currently lacking. This study aims to bridge this gap by utilizing three commonly used measures: participant self-reported perceived muscle fatigue scores, a sports physiotherapist's manual palpation-based muscle tightness scores, and surface electromyography sensors.

View Article and Find Full Text PDF

Out-of-plane pressure and electron doping can affect interlayer interactions in van der Waals materials, modifying their crystal structure and physical and chemical properties. In this study, we used magnetic monolayer 1T/1T'-CrS and high symmetry 2D-honeycomb material GeC to construct a GeC/CrS/GeC triple layered van der Waals heterostructure (vdWH). Based on density functional theory calculations, we found that applying out-of-plane strain and doping with electrons could induce a 1T'-to-1T phase transition and consequently the ferromagnetic (FM)-to-antiferromagnetic (AFM) transition in the CrS layer.

View Article and Find Full Text PDF