Publications by authors named "Chenghao Yu"

Dendritic mesoporous organosilica (DMOS) nanoparticles are widely used to transport therapeutic agents to cancer sites and rapidly release them owing to their rapid biodegradability in the tumor microenvironment (TME). However, the role of these DMOS nanoparticles as nanocarriers is limited, and their applications remain relatively simple. In this study, Fe-doped dendritic mesoporous organosilica (Fe-DMOS) nanoparticles are designed as a new type of ferroptosis inducer and are combined with sodium hyaluronate-modified calcium peroxide to form TME-responsive nanocomposites.

View Article and Find Full Text PDF

Cardiovascular disease (CVD) remains a leading cause of mortality and disability globally. Various cardiovascular diseases are often associated with ion dyshomeostasis within and outside cardiomyocytes, such as sodium ions, calcium ions and potassium ions. Calcium ions (Ca) not only participate in the contractile activity of cardiomyocytes and smooth muscle cells, but also participate in the tricarboxylic acid cycle as a cellular energy source, and act as a second messengers during many biological processes.

View Article and Find Full Text PDF

Musculoskeletal tissue repair and rehabilitation face significant challenges in effectively repairing injured tissues and achieving functional recovery. Recent advancements highlight the crucial role of electrical conductivity in modulating cellular activity, promoting tissue repair, and enhancing recovery. This understanding leads to the development of bio-electroactive materials that combine biocompatibility with electrical conductivity to interact with biological systems.

View Article and Find Full Text PDF

The accumulation of ice on exposed surfaces in freezing conditions creates substantial operational difficulties for critical infrastructure across aviation, energy networks, and transportation systems, elevating risks of dangerous situations. This study focuses on the development of a photothermal superhydrophobic anti-icing coating with enhanced thermal conductivity, low cost, and simple fabrication. The coating combines passive anti-icing properties with active deicing capabilities, utilizing carboxylated MWCNTs modified with 1,1,2,2-perfluorodecyltrimethoxysilane (FDTS) to form micron particles (CMPs).

View Article and Find Full Text PDF

Background: Measuring bilateral ground reaction forces (GRFs) and centre of pressure (COP) is essential in gait analysis, requiring subjects to step each foot sequentially onto a separate forceplate. However, this requirement often causes multiple trial attempts, especially in patients with neuromusculoskeletal disorders. Consciously targeting the forceplates could also alter walking mechanics, leading to unnatural gait patterns.

View Article and Find Full Text PDF

Extracellular matrix (ECM), a core member of tumor microenvironment, is ≈1.5-fold harder than the surrounding normal tissues. Regulating the stiffness of ECM can significantly impact physiological activities of tumor cells, such as growth, differentiation, and migration.

View Article and Find Full Text PDF

Chondrocytes in articular cartilage can secrete extracellular matrix to maintain cartilage homeostasis. It is well known that articular cartilage chondrocytes are sensitive to mechanical loading and that mechanical stimuli can be translated to biological processes. This study provides deep insight into the impact of mechanical loading on chondrocytes via single-cell RNA sequencing (scRNA-seq).

View Article and Find Full Text PDF

Single-atom catalysts with abnormally high catalytic activity have garnered extensive attention and interest for their application in tumor therapy. Despite the advancements made with current nanotherapeutic agents, developing efficient systems for cancer treatment remains challenging due to low activity, uncontrollable behavior, and nonselective interactions. Herein, we have constructed Ru single-atom-anchored MXene nanozymes (Ru-TiCT-PEG) with a mild photothermal effect and multi-enzyme catalytic activity for synergistic tumor therapy.

View Article and Find Full Text PDF

Accurate identification of cancer cells under complex physiological environments holds great promise for noninvasive diagnosis and personalized medicine. Herein, we developed dual-aptamer-based DNA logic-gated series lamp probes (Apt-SLP) by coupling a DNA cell-classifier (DCC) with a self-powered signal-amplifier (SSA), enabling rapid and sensitive identification of cancer cells in a blood sample. DCC is endowed with two extended-aptamer based modules for recognizing the two cascade cell membrane receptors and serves as a DNA logic gate to pinpoint a particular and narrow subpopulation of cells from a larger population of similar cells.

View Article and Find Full Text PDF

The neurotoxin methylmercury in seafood threatens food safety worldwide. China has implemented stringent wastewater policies, established numerous treatment facilities and enforced rigorous water quality standards to address pollution in its waterways. However, the impact of these policies on seafood safety and methylmercury exposure remains unknown.

View Article and Find Full Text PDF

Originally thought to be incurable, huge therapeutic progress has been made in recent years in the field of inherited neuromuscular disorders. Approaches aiming to rescue the underlying pathophysiology, i.e.

View Article and Find Full Text PDF

Aggregation-induced emission (AIE) photosensitizers are promising for photodynamic therapy, yet their short excitation wavelengths present a limitation. In this study, we develop a series of organic photosensitizers with dual modulation capabilities based on excited-state intramolecular proton transfer (ESIPT) and AIE. Notably, we synthesize near-infrared (NIR)-excited photosensitive nanoparticles through a coassembly strategy utilizing upconversion nanoparticles (UCNPs) and amphiphilic polymers.

View Article and Find Full Text PDF

Objectives: This study aimed to investigate the effects of silencing Ras homolog family member C (RhoC) on the proliferation, apoptosis, invasion, migration, and epithelial-mesenchymal transition (EMT) of salivary adenoid cystic carcinoma (SACC) and its molecular mechanisms.

Methods: A total of 27 SACC lesions and normal salivary gland tissues that were surgically resected at Qingdao Municipal Hospital from January 1, 2019 to March 1, 2024 were selected, and the expression levels of RhoC were detected by Western blot and immunohistochemistry. Three small interfering RNA (siRNAs) were designed to target the RhoC gene sequence, transfected into SACC-LM and SACC-83 cell lines, and evaluated for transfection efficiency.

View Article and Find Full Text PDF

Background: The process of bone healing is complex and involves the participation of osteogenic stem cells, extracellular matrix, and angiogenesis. The advancement of bone regeneration materials provides a promising opportunity to tackle bone defects. This study introduces a composite hydrogel that can be injected and cured using UV light.

View Article and Find Full Text PDF

Background: Mild cognitive impairment (MCI) may lead to difficulty maintaining postural stability and balance during locomotion. This heightened susceptibility to falls is particularly evident during tasks such as obstacle negotiation, which demands efficient motor planning and reallocation of attentional resources. This study proposed a multi-objective optimal control (MOOC) technique to assess the changes in motor control strategies during obstacle negotiation in older people affected by amnestic MCI.

View Article and Find Full Text PDF
Article Synopsis
  • Ferroptosis is a newly identified process of cell death driven by iron and oxidation, linked to various diseases and important in different signaling pathways.
  • This process can eliminate cancer cells but may cause harm to healthy organs, making it a target for new drug therapies.
  • Curcumin, known for its benefits in treating conditions like cancer and inflammation, influences ferroptosis in complex ways, acting as both an inducer and inhibitor depending on dosage and cell type.
View Article and Find Full Text PDF

Introduction: Nanofibrous spheres, with their injectable format and biomimetic three-dimensional topologies that emulate the complexity of natural extracellular environments, have become increasingly attractive for applications in biomedical and regenerative medicine. Our research contributes to this growing field by detailing the design and fabrication of a novel series of polylactic acid/nano-hydroxyapatite (PLA/nHA) hybrid nanofibrous spheres.

Methods: These advanced structures were created by integrating electrospinning and electrospray techniques, which allowed for precise control over the nanofibrous spheres, especially in size.

View Article and Find Full Text PDF

Platelet-rich plasma (PRP) intrauterine infusion has been demonstrated to be effective in treating thin endometrium and achieving pregnancy. However, the rapid release of growth factors limits its effectiveness in clinical applications, and thus, multiple intrauterine infusions are often required to achieve therapeutic efficacy. In this study, a GelMA hydrogel microsphere biomaterial is developed using droplet microfluidics to modify the delivery mode of PRP and thus prolong its duration of action.

View Article and Find Full Text PDF

Considering the profound impact of structure on heterojunction catalysts, the rational design of emerging catalysts with optimized energy band structures is required for antitumor efficiency. Herein, we select titanium nitride (TiN) and Pt to develop a multifunctional Schottky heterojunction named Pt/H-TiN&SRF (PHTS) nanoparticles (NPs) with a narrowed bandgap to accomplish "four birds with one stone" involving enzyo/sono/photo three modals and additional ferroptosis. The -grown Pt NPs acted as electron traps that can cause the energy band to bend upward and form a Schottky barrier, thereby facilitating the separation of electron/hole pairs in exogenous stimulation catalytic therapy.

View Article and Find Full Text PDF

To study the physical property effects of the laser on GaInP/GaAs/Ge solar cells and their sub-cell layers, a pulsed laser with a wavelength of 532 nm was used to irradiate the solar cells under various energy conditions. The working performance of the cell was measured with a source meter. The electroluminescence (EL) characteristics were assessed using an ordinary and an infrared camera.

View Article and Find Full Text PDF

Bone defects typically result in bone nonunion, delayed or nonhealing, and localized dysfunction, and commonly used clinical treatments (i.e., autologous and allogeneic grafts) have limited results.

View Article and Find Full Text PDF

Background: Chemotherapy-induced nausea and vomiting (CINV) is one of the most frequent and critical side effects due to chemotherapeutics. In China, Xiao-Ban-Xia-Tang (XBXT) has already been applied extensively to prevent and treat CINV. However, there is limited testimony on the effectiveness and safety of this purpose, and there was no correlative systematic review.

View Article and Find Full Text PDF

To study the interference effect of the laser in motion mode on a CCD, the continuous laser with the wavelength of 532 nm at different motion speeds was used to scan the CCD. The experimental results show that the crosstalk phenomenon produced by static and dynamic irradiation is significantly different. When the continuous laser statically radiates the CCD, the vertical crosstalk line is observed in the output image.

View Article and Find Full Text PDF

Piezoelectric dynamic therapy (PzDT) is an effective method of tumor treatment by using piezoelectric polarization to generate reactive oxygen species. In this paper, two-dimensional Cu-doped BiOCl nanosheets with surface vacancies are produced by the photoetching strategy. Under ultrasound, a built-in electric field is generated to promote the electron and hole separation.

View Article and Find Full Text PDF

Advancements in tissue engineering are crucial for successfully healing tendon-bone connections, especially in situations like anterior cruciate ligament (ACL) restoration. This study presents a new and innovative three-dimensional scaffold, reinforced with nanofibers, that is specifically intended for acellular tendon complexes. The scaffold consists of a distinct layered arrangement comprising an acellular tendon core, a middle layer of polyurethane/type I collagen (PU/Col I) yarn, and an outside layer of poly (L-lactic acid)/bioactive glass (PLLA/BG) nanofiber membrane.

View Article and Find Full Text PDF