Objective: This study aims to systematically identify differentially expressed genes associated with lysosomal autophagy in ulcerative colitis (UC) and validate key candidate genes in an animal model, thereby providing novel insights driving UC pathogenesis.
Methods: The GSE47908 dataset from the Gene Expression Omnibus (GEO) was subjected to principal component analysis (PCA), followed by stratified identification of differentially expressed genes (DEGs) across UC subtypes. Immune cell infiltration of these gene sets was evaluated using the CIBERSORT algorithm.
Background: Intestinal ischemia-reperfusion (II/R) injury is a serious condition characterized by high morbidity and mortality rates. Research has shown that II/R injury is closely linked to autophagy and immune dysregulation. This study aims to investigate the potential correlations between autophagy-related genes and infiltrating immune cells in II/R injury.
View Article and Find Full Text PDFStructural and functional changes in SOD-polyphenol complexes resulting from polyphenol structural variations under high pressure remain unclear. In this study, we employed multispectral analyses and molecular dynamics simulations to investigate changes in non-covalent bonds and functional properties of SOD complexes with four polyphenols under various pressures. SOD-catechin exhibited the lowest binding energy (-7.
View Article and Find Full Text PDFPectic polysaccharides are the mainly bioactive components in (sweet tea) leaves. Nevertheless, owing to their diverse and complex chemical structures, the detailed structure-function relationships (SFR) of pectic polysaccharides from sweet tea (STP) are still unclear. Herein, the influence of STP's esterified degree on its diverse biological functions was uncovered.
View Article and Find Full Text PDFSince the 21st century, chronic diseases have become a worldwide health problem due to their high morbidity and mortality. Soybean bioactive substances, especially soybean peptides, are considered to have health benefits beyond nutritional effects. As the most studied peptide in soybean, lunasin has been proven to exert beneficial effects on various chronic disorders.
View Article and Find Full Text PDFRedox Rep
December 2025
Periodontitis, a common dental illness, causes periodontal tissue inflammation and irreversible bone loss, inevitably resulting in tooth loss. Hyperhomocysteinaemia (HHcy), defined as blood total homocysteine (Hcy) levels greater than 15 µmol/L, is linked to increased cardiovascular disease risk. Mounting evidence indicates a connection between HHcy and periodontitis; however, the underlying processes remain unknown.
View Article and Find Full Text PDFLiubao tea and ripen Pu-erh tea are representatives of dark tea in southern China. The two dark teas are famous for unique flavors, but confusingly different in development status of tea industry. In this study, microbial DNA amplification sequencing and mass spectrometry-based untargeted metabolomics were applied to observe significant differences in microbial community structure and metabolite profile between the two teas.
View Article and Find Full Text PDFOsteoporosis and bone injury healing in elderly patients are major medical challenges, often exacerbated by the accumulation of senescent cells. Herein, we show that TPE-Gal, which contains a tetraphenylethene unit and a galactose moiety, offers a promising molecular therapy designed to light up and eliminate senescent cells through a hydrolysis reaction catalyzed by β-galactosidase, an enzyme overexpressed in senescent cells. The reaction produces TPE-OH, which, in turn, increases reactive oxygen species levels within the senescent cells, leading to noninflammatory apoptosis of senescent cells.
View Article and Find Full Text PDFHypertension is a major global health concern, and there is a need for new antihypertensive agents derived from natural sources. This study aims to identify novel angiotensin I-converting enzyme (ACE) inhibitors from bioactive peptides derived from food sources, particularly highland barley proteins, addressing the gap in effective natural ACE inhibitors. This research employs a machine learning-based pipeline combined with peptidomics to screen for ACE-inhibitory peptides, Gradient Boosted Decision Trees (GBDT) with the best performance among four tested models was used to predict the ACE-inhibitory capacity of peptides derived from papain-hydrolyzed highland barley protein.
View Article and Find Full Text PDFUnlabelled: Oral squamous cell carcinoma (OSCC) is a prevalent malignancy in the oral-maxillofacial region with a poor prognosis. Oral microbiomes play a potential role in the pathogenesis of this disease. However, findings from individual studies have been inconsistent, and a comprehensive understanding of OSCC-associated microbiome dysbiosis remains elusive.
View Article and Find Full Text PDFInt J Biol Macromol
April 2025
In recent years, quinoa protein (QP) has attracted attention for its balanced amino acids composition, but its limited techno-functional properties continue to pose challenges for its utilization. Non-enzymatic Maillard glycation is considered as a promising strategy to expand the utilization of plant proteins in food processing due to its cost-effectiveness, spontaneous nature, and the lack of need for additives to initiate the reaction. Furthermore, the use of hyaluronic acid (HA) as an ingredient in food products is becoming increasingly accepted and popular.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Rapid detection and absorption of TcO contamination in the environment are critical due to its high radioactivity, long half-life, and significant environmental mobility. Resins have been demonstrated effective bifunctional properties for both the detection and separation of TcO . However, the poor stability of these compounds limits their practical application.
View Article and Find Full Text PDFThe elimination of the β-emitting pertechnetate ion (TcO) from highly alkaline tank waste poses a daunting challenge that is of great significance for nuclear safety and environmental protection. Herein, we report a strategy to fabricate an alkaline-stable porous resin (PANPEI-MeCl) that features hyperbranched quaternary amine groups grafted on the surface and confined within the pores of a superhydrophobic polymer matrix synthesized by a one-pot method, exhibiting a clear superiority both in adsorption kinetics and efficiency compared with available commercial anion-exchange resins applying to TcO capture. Notably, the alkaline stability of the resin can be improved by manipulating the length of side chain alkyl groups, and it shows ultrahigh structural integrity and prominent performance toward acid/alkaline soaking, high-temperature calcination procedures, and high doses of ionizing radiation.
View Article and Find Full Text PDFAlcoholic liver disease (ALD) is regarded as one of the main global health problems. Accumulated evidence indicates that fruit-derived polyphenols can lower the risk of ALD, this attributed to their strong antioxidant capacities. Thinned immature kiwifruits (TIK) are the major agro-byproducts in the production of kiwifruits, which have abundantly valuable polyphenols.
View Article and Find Full Text PDFFoods
September 2024
Thinned unripe kiwifruits (TUK) are considered the major agro by-products in kiwifruit production. To promote their potential applications, polyphenols and biological effects of unripe fruits from nine commercial kiwifruit cultivars were compared. Our findings showed that TUK were rich in bioactive polyphenols, which varied greatly by different cultivars.
View Article and Find Full Text PDFAddressing the challenge of blood glucose fluctuations triggered by the ingestion of pea starch, we have adopted an eco-friendly strategy utilizing microwave irradiation to synthesize the novel pea starch-tea polyphenol complexes. These complexes exhibit high swelling capacity and low solubility, and their thermal profile with low gelatinization temperature and enthalpy indicates adaptability to various processing conditions. In vitro digestion studies showed that these complexes have a small amount of rapidly digestible starch and a large amount of resistant starch, leading to a slower digestion rate.
View Article and Find Full Text PDFBackground: Instead of completely suppressing blood vessels inside tumors, vascular normalization therapy is proposed to normalize and prune the abnormal vasculature in tumor microenvironment (TME) to acquire a normal and stable blood flow and perfusion. The theoretical basis for the use of "blood-activating and stasis-resolving" formulas in Traditional Chinese Medicine to treat cancer is highly consistent with the principle of vascular normalization therapy, suggesting the potential application of these traditional formulas in vascular normalization therapy.
Purpose: To study the underlying mechanisms of a classical "blood-activating and stasis-resolving" formula, Taohong Siwu decoction (TSD), in enhancing the efficacy of chemotherapy for breast cancer treatment.
Int Immunopharmacol
December 2024
The clinical use of doxorubicin has been severely limited by doxorubicin-induced cardiotoxicity (DIC). Its mechanism is extremely complex and involves reactive oxygen species overgeneration, DNA damage, and aberrant inflammatory activity, which also involves multi-regulatory cell death mechanisms, including apoptosis, autophagy, and pyroptosis. These mechanisms overlap and crosstalk, resulting in the poor intervention of DIC injury.
View Article and Find Full Text PDFPlant-based proteins have received considerable global attention due to their nutritional value and potential health effects. As a high-quality plant protein, the hypoglycemic effect of quinoa protein and its potential mechanism have not been fully elucidated. In the present study, we compared the hypoglycemic effects of raw quinoa protein (RP-quinoa) and heat-treated quinoa protein (HP-quinoa) and further explored their potential mechanisms using multi-omics analysis based on gut microbiota and fecal metabolic profiles in HFD-fed mice.
View Article and Find Full Text PDFBuckwheat sprouts are rich in pectic polysaccharides, which possess numerous health-improving benefits. However, the precise structure-activity relationship of pectic polysaccharides from Tartary buckwheat sprouts (TP) is still scant, which ultimately restricts their applications in the food industry. Hence, both ultrasound-assisted Fenton treatment (UAFT) and mild alkali treatment (MATT) were utilized for the modification of TP, and then the effects of physicochemical characteristics of original and modified TPs on their bioactivities were assessed.
View Article and Find Full Text PDFCrit Rev Food Sci Nutr
June 2025
Quinoa ( Willd) is widely regarded as a versatile pseudo-cereal native to the Andes Mountains in South America. It has gained global recognition as a superfood due to its rich nutritional profile. While quinoa grains are well-known, there is an undiscovered potential in quinoa greens, such as sprouts, leaves, and microgreens.
View Article and Find Full Text PDFHypothesis: Poor storage stability and oxidative deterioration are the common drawbacks of edible oils rich in polyunsaturated fatty acids (PUFAs). We hypothesized that the natural zein/tannic acid self-assembly nanoparticles (ZT NPs) could be employed as stabilizers to anchor at the oil-water interface, thus constructing Pickering emulsion gel (PKEG) system for three types of PUFA-rich oils, soybean oil (SO), fish oil (FO) and cod liver oil (CLO), to improve the storage and oxidation stability.
Experiments: ZT NPs were prepared by the anti-solvent coprecipitation method, and the three-phase contact angle, FT-IR, and XRD were mainly characterized.
Pectic polysaccharides are one of the most vital functional ingredients in quinoa microgreens, which exhibit numerous health-promoting benefits. Nevertheless, the detailed information about the structure-function relationships of pectic polysaccharides from quinoa microgreens (QMP) remains unknown, thereby largely restricting their applications as functional foods or fortified ingredients. Therefore, to unveil the possible structure-function relationships of QMP, the mild alkali de-esterification was utilized to modify QMP, and then the correlations of esterification degrees of native and modified QMPs to their biological functions were systematically investigated.
View Article and Find Full Text PDF