Publications by authors named "Shaocong Wang"

Current quantum chemistry and materials science are dominated by first-principles methodologies such as density functional theory. However, these approaches face substantial computational costs as system scales up. In addition, the von Neumann bottleneck of digital computers imposes energy efficiency limitations.

View Article and Find Full Text PDF

Digital twins, which replicate real-world entities through computational models, are transforming manufacturing and automation. While recent advances in machine learning have enabled data-driven digital twin development using discrete-time data and finite-depth models on digital hardware, these approaches face significant limitations. They struggle to capture continuous-time dynamics and model complex systems, and suffer from substantial time and energy overheads due to physically separated storage and processing as well as frequent analog-digital (A/D) conversions.

View Article and Find Full Text PDF

Non-coding RNAs (ncRNAs), as critical regulators of gene expression, play a pivotal role in the modulation of pyroptosis and exhibit a close association with a wide range of diseases. Pyroptosis is a form of programmed cell death mediated by inflammasomes, characterized by cell membrane perforation, release of inflammatory cytokines, and a robust immune response. Recent studies have revealed that ncRNAs influence the initiation and execution of pyroptosis by regulating the expression of pyroptosis-related genes or modulating associated signaling pathways.

View Article and Find Full Text PDF

Machine learning has advanced unprecedentedly, exemplified by GPT-4 and SORA. However, they cannot parallel human brains in efficiency and adaptability due to differences in signal representation, optimization, runtime reconfigurability, and hardware architecture. To address these challenges, we introduce pruning optimization for input-aware dynamic memristive spiking neural network (PRIME).

View Article and Find Full Text PDF

Neuromorphic computing devices offer promising solutions for next-generation computing hardware, addressing the high throughput data processing demands of artificial intelligence applications through brain-mimicking non-von Neumann architecture. Herein, PEDOT:Tos/PTHF-based organic electrochemical transistors (OECTs) with dual-modal memory functions-both short-term and long-term-are demonstrated. By characterizing memory levels and relaxation times, the device has been efficiently manipulated and switched between the two modes through coupled control of pulse voltage and duration.

View Article and Find Full Text PDF

The electrochemical CO reduction reaction (CORR) is an important application that can considerably mitigate environmental and energy crises. However, the slow proton-coupled electron transfer process continues to limit overall catalytic performance. Fine-tuning the reaction microenvironment by accurately constructing the local structure of catalysts provides a novel approach to enhancing reaction kinetics.

View Article and Find Full Text PDF

Circularly polarized light (CPL) is fundamental to phase-controlled imaging, quantum optics, and optical computing. Conventional CPL detection, relying on polarizers and quarter-wave plates, complicates device design and reduces sensitivity. Among emerging CPL detectors, organic field-effect transistors (OFET) with helical organic semiconductors are highly promising due to their compact structures but suffer tedious synthesis, low dissymmetric factors (g < 0.

View Article and Find Full Text PDF

Visual sensors, including 3D light detection and ranging, neuromorphic dynamic vision sensor, and conventional frame cameras, are increasingly integrated into edge-side intelligent machines. However, their data are heterogeneous, causing complexity in system development. Moreover, conventional digital hardware is constrained by von Neumann bottleneck and the physical limit of transistor scaling.

View Article and Find Full Text PDF

The human brain is a complex spiking neural network (SNN) capable of learning multimodal signals in a zero-shot manner by generalizing existing knowledge. Remarkably, it maintains minimal power consumption through event-based signal propagation. However, replicating the human brain in neuromorphic hardware presents both hardware and software challenges.

View Article and Find Full Text PDF

Background: Cardiac hypertrophy and its associated remodeling are among the leading causes of heart failure. Lysine crotonylation is a recently discovered posttranslational modification whose role in cardiac hypertrophy remains largely unknown. NAE1 (NEDD8 [neural precursor cell expressed developmentally downregulated protein 8]-activating enzyme E1 regulatory subunit) is mainly involved in the neddylation modification of protein targets.

View Article and Find Full Text PDF
Article Synopsis
  • - The brain functions dynamically by reconfiguring itself to associate new inputs with past experiences, while AI models are static and don't have this ability, using separate memory and processing systems.
  • - The authors propose a new approach combining hardware and software in a dynamic neural network that uses memristors to create a semantic memory system, allowing for the association of new data with past experiences.
  • - Their designs, tested on ResNet and PointNet++ for image and 3D point classification, show high accuracy comparable to traditional software methods, and result in significant reductions in both computational budget and energy consumption.
View Article and Find Full Text PDF

Partial discharge (PD) is one of the major causes of insulation accidents in oil-immersed transformers, generating a large number of signals that represent the health status of the transformer. In particular, acoustic signals can be detected by sensors to locate the source of the partial discharge. However, the array, type, and quantity of sensors play a crucial role in the research on the localization of partial discharge sources within transformers.

View Article and Find Full Text PDF

Obesity is a global health challenge with limited therapeutic solutions. Here, we demonstrate the engineering of an energy-dissipating hybrid tissue (EDHT) in the body for weight control. EDHT is constructed by implanting a synthetic gel matrix comprising immunomodulatory signals and functional cells into the recipient mouse.

View Article and Find Full Text PDF

Histone lysine crotonylation (Kcr) is a new acylation modification first discovered in 2011, which has important biological significance for gene expression, cell development, and disease treatment. In the past over ten years, numerous signs of progress have been made in the research on the biochemistry of Kcr modification, especially a series of Kcr modification-related "reader", "eraser", and "writer" enzyme systems are identified. The physiological function of crotonylation and its correlation with development, heredity, and spermatogenesis have been paid more and more attention.

View Article and Find Full Text PDF

Aqueous all-iron flow batteries (AIFBs) are attractive for large-scale and long-term energy storage due to their extremely low cost and safety features. To accelerate commercial application, a long cyclable and reversible iron anolyte is expected to address the critical barriers, namely iron dendrite growth and hydrogen evolution reaction (HER). Herein, we report a robust iron complex with triethanolamine (TEA) and 2-methylimidazole (MM) double ligands.

View Article and Find Full Text PDF

Background: Emerging research has reported that circular RNAs (circRNAs) play important roles in cardiac cell death after myocardial ischemia and reperfusion (I/R). Ferroptosis, a new form of cell death discovered in recent years, has been proven to participate in the regulation of myocardial I/R. This study used circRNA sequencing to explore the key circRNA in the regulation of cardiac ferroptosis after I/R and study the mechanisms of potential circRNA function.

View Article and Find Full Text PDF

Intrinsic plasticity of neurons, such as spontaneous threshold lowering (STL) to modulate neuronal excitability, is key to spatial attention of biological neural systems. In-memory computing with emerging memristors is expected to solve the memory bottleneck of the von Neumann architecture commonly used in conventional digital computers and is deemed a promising solution to this bioinspired computing paradigm. Nonetheless, conventional memristors are incapable of implementing the STL plasticity of neurons due to their first-order dynamics.

View Article and Find Full Text PDF

The Cre-loxP-mediated genetic lineage tracing system is essential for constructing the fate mapping of single-cell progeny or cell populations. Understanding the structural hierarchy of cardiac progenitor cells facilitates unraveling cell fate and origin issues in cardiac development. Several prospective Cre-loxP-based lineage-tracing systems have been used to analyze precisely the fate determination and developmental characteristics of endocardial cells (ECs), epicardial cells, and cardiomyocytes.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers are developing 2D material-based memory devices that can work in the short-wave infrared (SWIR) for new computing methods, but it's still challenging to create them with the needed performance.
  • The study presents a memory device made from a tellurium-based 2D van der Waals heterostructure that effectively uses voltage and laser pulses to enhance both long-term and short-term memory functionalities.
  • This device demonstrates a memristive in-sensor reservoir computing system, capable of processing and learning from signals, showcasing the potential of 2D materials in advanced electronics for smart signal processing.
View Article and Find Full Text PDF

As a member of TALE family, Meis1 has been proven to regulate cell proliferation and differentiation during cell fate commitment; however, the mechanism is still not fully understood. The planarian, which has an abundance of stem cells (neoblasts) responsible for regenerating any organ after injury, is an ideal model for studying the mechanisms of tissue identity determination. Here, we characterized a planarian homolog of Meis1 from the planarian .

View Article and Find Full Text PDF

Background: Long non-coding RNA (lncRNA) is one of the most essential forms of transcripts, playing crucial regulatory roles in the development of cancers and diseases without protein-coding ability. It was assumed that short ORFs (sORFs) in lncRNA were weak to translate proteins. However, recent research has shown that sORFs can encode peptides, which increases the difficulty to identify lncRNA.

View Article and Find Full Text PDF

In-sensor multi-task learning is not only the key merit of biological visions but also a primary goal of artificial-general-intelligence. However, traditional silicon-vision-chips suffer from large time/energy overheads. Further, training conventional deep-learning models is neither scalable nor affordable on edge-devices.

View Article and Find Full Text PDF

Biofilm of oral pathogenic microorganisms induced by their multiplication and coaggregation would lead to periodontitis. In biofilms, the extracellular polymeric substances (EPS) as a protective shield encapsulates the individual bacteria, protecting them against attack. To alleviate periodontal disease, disrupting the EPS of pathogenic bacteria is crucial and challenging.

View Article and Find Full Text PDF

Actin is an integral component of the cytoskeleton, which plays an important role in various fundamental cellular processes, such as affecting the polarity of embryonic cells during embryonic development in various model organisms. Meanwhile, previous studies have demonstrated that the polymerization of the actin cytoskeleton can affect cell migration, proliferation, and differentiation. Actin polymerization state regulated osteogenic differentiation and affected cell proliferation.

View Article and Find Full Text PDF

Doxorubicin (DOX) is an efficacious and widely used drug for human malignancy treatment, but its clinical application is limited due to side effects, especially cardiotoxicity. Our present study revealed that DOX could induce apoptosis in cardiomyocytes. Herein, we screened the dysregulated long noncoding RNAs (lncRNAs) in DOX-treated cardiomyocytes.

View Article and Find Full Text PDF