A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Efficient modeling of ionic and electronic interactions by a resistive memory-based reservoir graph neural network. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Current quantum chemistry and materials science are dominated by first-principles methodologies such as density functional theory. However, these approaches face substantial computational costs as system scales up. In addition, the von Neumann bottleneck of digital computers imposes energy efficiency limitations. Here we propose a software-hardware co-design: the resistive memory-based reservoir graph neural network for efficient modeling of ionic and electronic interactions. Software-wise, the reservoir graph neural network is evaluated for computational tasks, including atomic force, Hamiltonian and wavefunction prediction, achieving comparable accuracy while reducing computational costs by approximately 10-, 10- and 10-fold, respectively, compared with traditional first-principles methods. Moreover, it reduces training costs by approximately 90% due to reservoir computing. Hardware-wise, validated on a 40-nm 256-kb in-memory computing macro, our co-design achieves improvements in area-normalized inference speed by approximately 2.5-, 2.5- and 2.7-fold, and inference energy efficiency by approximately 2.7, 1.9 and 4.4 times, compared with state-of-the-art digital hardware, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s43588-025-00844-3DOI Listing

Publication Analysis

Top Keywords

reservoir graph
12
graph neural
12
neural network
12
efficient modeling
8
modeling ionic
8
ionic electronic
8
electronic interactions
8
resistive memory-based
8
memory-based reservoir
8
computational costs
8

Similar Publications