Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Although 2D materials are widely explored for data storage and neuromorphic computing, the construction of 2D material-based memory devices with optoelectronic responsivity in the short-wave infrared (SWIR) region for in-sensor reservoir computing (RC) at the optical communication band still remains a big challenge. In this work, an electronic/optoelectronic memory device enabled by tellurium-based 2D van der Waals (vdW) heterostructure is reported, where the ferroelectric CuInP S and tellurium channel endow this device with both the long-term potentiation/depression by voltage pulses and short-term potentiation by 1550 nm laser pulses (a typical wavelength in the conventional fiber optical communication band). Leveraging the rich dynamics, a fully memristive in-sensor RC system that can simultaneously sense, decode, and learn messages transmitted by optical fibers is demonstrated. The reported 2D vdW heterostructure-based memory featuring both the long-term and short-term memory behaviors using electrical and optical pulses in SWIR region has not only complemented the wide spectrum of applications of 2D materials family in electronics/optoelectronics but also paves the way for future smart signal processing systems at the edge.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202211598DOI Listing

Publication Analysis

Top Keywords

optical communication
12
communication band
12
electronic/optoelectronic memory
8
memory device
8
device enabled
8
enabled tellurium-based
8
tellurium-based van
8
van der
8
der waals
8
in-sensor reservoir
8

Similar Publications

Background: Identifying suspected anterior circulation large-vessel occlusion (aLVO) strokes during emergency calls could enhance dispatch efficiency, particularly in rural areas. However, data on emergency medical dispatchers' (EMDs) ability to recognize aLVO symptoms remain limited. This simulation study aimed to evaluate the feasibility of identifying side-specific arm paresis, side-specific conjugate eye deviation (CED), and aphasia during emergency calls by instructing layperson callers to perform brief, standardized examination steps.

View Article and Find Full Text PDF

Active metasurfaces incorporating electro-optic materials enable high-speed free-space optical modulators that show great promise for a wide range of applications, including optical communication, sensing and computing. However, the limited light-matter interaction lengths in metasurfaces typically require high driving voltages exceeding tens of volts to achieve satisfactory modulation. Here we present low-voltage, high-speed free-space optical modulators based on silicon-organic-hybrid metasurfaces with dimerized-grating-based nanostructures.

View Article and Find Full Text PDF

In-line multi-wavelength non-destructive pharma quality monitoring with ultrabroadband carbon nanotubes photo-thermoelectric imaging scanners.

Light Sci Appl

September 2025

Department of Electrical, Electronic, and Communication Engineering, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan.

While non-destructive in-line monitoring at manufacturing sites is essential for safe distribution cycles of pharmaceuticals, efforts are still insufficient to develop analytical systems for detailed dynamic visualisation of foreign substances and material composition in target pills. Although spectroscopies, expected towards pharma testing, have faced technical challenges in in-line setups for bulky equipment housing, this work demonstrates compact dynamic photo-monitoring systems by selectively extracting informative irradiation-wavelengths from comprehensive optical references of target pills. This work develops a non-destructive in-line dynamic inspection system for pharma agent pills with carbon nanotube (CNT) photo-thermoelectric imagers and the associated ultrabroadband sub-terahertz (THz)-infrared (IR) multi-wavelength monitoring.

View Article and Find Full Text PDF

Precise measurement of motor neuron dysfunction in Drosophila ALS model via climbing assay and leg imaging.

Methods Cell Biol

September 2025

The HIT Center for Life Sciences, Harbin Institute of Technology, Harbin, P.R. China; Medical and Health Research Institute, Zhengzhou Research Institute of HIT, Zhengzhou, HA, P.R. China. Electronic address:

Amyotrophic lateral sclerosis (ALS) is a severe neurodegenerative disorder characterized by progressive degeneration of motor neurons, leading to muscle weakness, paralysis, and death. While there is a plethora of studies focusing on many aspects of ALS, the pathogenesis of this disease is not well understood, and effective treatments are scarce. Drosophila melanogaster is a powerful model organism for studying ALS due to its genetic tractability and its evolutionarily conserved cellular and molecular processes which are also shared between the fly and human.

View Article and Find Full Text PDF

Investigating hazard exposures and safety dynamics among researchers in academic settings: Insights from a large-scale survey study.

J Safety Res

September 2025

Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA. Electronic address:

Introduction: Researchers, whether working in wet-labs, dry-labs, clinical settings, or field environments, encounter various hazards. However, there has been limited study on the health and safety of academic researchers. This study aimed to investigate hazardous occupational exposures and safety among researchers in academic settings at a large U.

View Article and Find Full Text PDF