Publications by authors named "Liping Weng"

Environmental risk posed by metolachlor to farmland has garnered significant concern. AlthoughPenicillium oxalicumMetF1 exhibits metolachlor degradation potential, underlying biochemical mechanisms remain unclear. To address this, a comprehensive investigation integrating physicochemical properties, phenotypic characterization, transcriptomic profiling, and metabolomic analysis was conducted.

View Article and Find Full Text PDF

In natural ecosystems, the (bio)availability of arsenic and phosphorus is greatly controlled by their interactions with metal (hydr)oxides and organic matter. Humic substances (HS), encompassing humic acids (HA) and fulvic acids (FA), constitute the primary form of organic matter. In this study, batch adsorption experiments were conducted and integrated with the NOM-CD model to achieve a molecular-level understanding of HS on the competitive interactions among arsenite, arsenate, and phosphate on goethite surfaces.

View Article and Find Full Text PDF

With the widespread application of antibiotics in aquaculture, antibiotic contamination of manure has become a serious concern. Interspecies electron transfer between microorganisms plays a crucial role in antibiotic biodegradation. This study investigated the impact and mechanism of electron transfer on tetracycline degradation in microbial electrochemical systems.

View Article and Find Full Text PDF

Humic acids (HAs), tea polyphenols (TPs), and fulvic acids (FAs) are bioactive substances known for their antimicrobial, antioxidant, and plant growth-promoting properties. However, the chemical structures and molecular mechanisms underlying their growth-promoting effects remain unclear. Solid-state C nuclear magnetic resonance analysis reveals that FA has the most aromatic and oxygen-containing groups, followed by HA and TP, with a molecular weight ranking of HA > TP > FA.

View Article and Find Full Text PDF

Preferential adsorption occurs during interaction between humic substances (HS) and metal (hydr)oxides, however, the preferential adsorption and thermal stability mechanism remains poorly understood. Here we show that solution pH can modify the configuration of humic acid (HA) and fulvic acid (FA), and thereby altering their fractionation and thermal stability in relation to goethite. At pH 5-7, particles with a molar mass of 3.

View Article and Find Full Text PDF

Humic acid (HA) enhances colloidal transport in porous media, yet the mechanisms by which the HA adsorption conformation affects colloid transport remain unclear. This study investigated the influence of HA on the transport of petroleum-hydrocarbon-contaminated soil colloids (TPHs-SC) in saturated sand columns. The presence of TPHs on the colloidal surface occupied adsorption sites, hindering HA from forming a horizontal adsorption conformation, as observed on uncontaminated soil colloids (SC).

View Article and Find Full Text PDF

Nanoplastics (NPs) can adversely affect living organisms. However, the uptake of NPs by plants and the physiological and molecular mechanisms underlying NP-mediated plant growth remain unclear, particularly in the presence of iron minerals and humic acid (HA). In this study, we investigated NP accumulation in rice (Oryza sativa L.

View Article and Find Full Text PDF

Polysaccharides with various molecular structures and morphology may influence the aggregation kinetics of nanoplastics. This study used various characterization methods to elucidate the heteroaggregation mechanism of polystyrene nanoplastics (PSNPs) in the presence of polysaccharides (ionic strength (IS) 1-800 mM NaCl and 0.01-60 mM CaCl).

View Article and Find Full Text PDF

The significant influx of antibiotics into the environment represents ecological risks and threatens human health. Microbial degradation stands as a highly effective method for reducing antibiotic pollution. This study explored the potential of immobilized microbial consortia to efficiently degrade tetracycline.

View Article and Find Full Text PDF

The loss of nitrogen in soil damages the environment. Clarifying the mechanism of ammonium nitrogen (NH-N) transport in soil and increasing the fixation of NH-N after N application are effective methods for improving N use efficiency. However, the main factors are not easily identified because of the complicated transport and retardation factors in different soils.

View Article and Find Full Text PDF

With the widespread use of tetracycline antibiotics (TCs) and the application of manure fertilizer in farmland, TCs and their metabolites especially 4-epimers have been heavily detected in agricultural soil. However, existing studies have focused on the residual and environmental behavior of maternal TCs, and few studies have looked at the ecotoxicity of their 4-epimers in soil. In this study, the degradation and interconversion of tetracycline (TC), oxytetracycline (OTC) and their 4-epimers (4-epitetracycline, ETC; 4-epioxytetracycline, OTC) were revealed.

View Article and Find Full Text PDF

Despite extensive study, geochemical modeling often fails to accurately predict lead (Pb) immobilization in environmental samples. This study employs the Charge Distribution MUlti-SIte Complexation (CD-MUSIC) model, X-ray absorption fine structure (XAFS), and density functional theory (DFT) to investigate mechanisms of phosphate (PO) induced Pb immobilization on metal (hydr)oxides. The results reveal that PO mainly enhances bidentate-adsorbed Pb on goethite via electrostatic synergy at low PO concentrations.

View Article and Find Full Text PDF

Hypothesis: The competitive interaction of oxyanions and humic nanoparticles (HNPs) with metal (hydr)oxide surfaces can be used to trace the ligand and charge distribution of adsorbed HNPs in relation to heterogeneity, fractionation, and conformational change.

Experiments: Batch adsorption experiments of HNPs on goethite were performed in the absence and presence of phosphate. The size of HNPs was measured with size exclusion chromatography.

View Article and Find Full Text PDF

Current-used pesticides (CUPs) and plastic films are essential materials used in greenhouse cultivation, which can lead to the residual accumulation of CUPs and microplastics (MPs) over time. The impact of CUPs and MPs on soil quality and food safety cannot be overlooked. However, the combined pollution resulting from CUPs and MPs in greenhouse soil remains poorly understood.

View Article and Find Full Text PDF

To promote efficient conversion of lignocellulose to humus (HS) during composting, a novel bio-electrochemical technology was applied and explored the effect and mechanism of electrification on carbon conversion during different composting periods. The results showed that supplementary electric field played different roles during composting. In the early stage, organic matter mineralization was significantly accelerated under electric field application, that was embodied in a 29.

View Article and Find Full Text PDF

Microplastics (MPs) in soil have attracted extensive attention as an emerging pollutant, and the transport of MPs is affected by their own physical and chemical properties, the chemical composition of soil solutions, and soil minerals. However, in the presence of oxides, the underlying mechanism for the transport of MPs in different ionic types and ionic strengths is still not fully understood. In this study, the effects of ionic type, ionic strength, and iron oxide on the transport of polystyrene microplastics (PSMPs) with different functional groups were investigated through stability experiments and transport experiments.

View Article and Find Full Text PDF

The degradation of organic pollutants and the adsorption of organic pollutants onto microplastics (MPs) in the environment have recently been intensively studied, but the effects of biocurrents, which are widespread in various soil environments, on the environmental behavior of MPs and antibiotic pollutants have not been reported. In this study, it was found that polylactic acid (PLA) and polyvinyl chloride (PVC) MPs accelerated the mineralization of humic substances in microbial electrochemical systems (MESs). After tetracycline (TC) was introduced into the MESs, the internal resistance of the soil MESs decreased.

View Article and Find Full Text PDF

Bioelectric field is a stimulated force to degrade xenobiotic pollutants in soils. However, the effect of bioelectric field on microplastics (MPs) aging is unclear. The degradation behavior of polyvinyl chloride (PVC), polyethylene (PE) and polylactic acid (PLA) was investigated in an agricultural soil microbial electrochemical system in which bioelectric field was generated in-situ by native microbes.

View Article and Find Full Text PDF

In this work, comparative study of paddy and upland soils were carried out to unravel mechanisms of enhanced soil organic carbon (SOC) sequestration in paddy soils using fractionation methods, C NMR and Nano-SIMS analysis, as well as organic layer thickness calculations (Core-Shell model). The results showed that although there is a strong increase in particulate SOC in paddy soils compared to that in the upland soils, the increase in mineral-associated SOC is more important, explaining 60-75% of SOC increase in the paddy soils. In the wet and dry alternate cycles of paddy soil, iron (hydr)oxides adsorb relatively small and soluble organic molecules (fulvic acid-like), promote catalytic oxidation and polymerization, thus accelerating formation of larger organic molecules.

View Article and Find Full Text PDF

The contamination of greenhouse vegetable soils with antibiotics and antibiotic resistance genes (ARGs), caused by the application of livestock and poultry manure, is a prominent environmental problem. In this study, the effects of two ecological earthworms (endogeic Metaphire guillelmi and epigeic Eisenia fetida) on the accumulation and transfer of chlortetracycline (CTC) and ARGs in a soil-lettuce system were studied via pot experiments. The results revealed that earthworm application accelerated the removal of the CTC from the soil and lettuce roots and leaves, with the CTC content reducing by 11.

View Article and Find Full Text PDF

Atmospheric deposition is an essential cadmium (Cd) pollution source in agricultural ecosystems, entering crops via roots and leaves. In this study, atmospherically deposited Cd was simulated using cadmium sulfide nanoparticles (CdS), and chili (Capsicum frutescens L.) was used to conduct a comparative foliar and root experiment.

View Article and Find Full Text PDF

This study aimed to obtain a better understanding on the environmental behavior of As in paddy soil and to reveal the influence mechanisms of different environmental factors on the availability of As in the soil solution. The effects of pH, calcium, and phosphate on the solubility and speciation distribution of As in the paddy soil collected from Zhuzhou of Hunan province were studied by combining the adsorption experiments with the NOM-CD model. The results showed that the minimum concentration of soluble As in the soil was at approximately a pH of 6.

View Article and Find Full Text PDF

Introduction: Harvested blueberries can be processed into wine to extend their shelf life and increase their commercial value. In order to produce fruit wine, external sugar is often added prior to fermentation to increase the final alcohol content to a target of 8-12% (v/v) to meet consumer expectations.

Method: we explore the effect of 8-14% (w/w) sucrose on the physicochemical properties of blueberry wine throughout the main fermentation process.

View Article and Find Full Text PDF

The combination of biochar (BC) and iron minerals improves their pollutant adsorption capacity. However, little is known about the reactivity of BC-iron mineral composites regarding their interaction and change in the pore structure. In this study, the mechanism of cadmium (Cd) adsorption by BC-iron oxide composites, such as BC combined with ferrihydrite (FH) or goethite (GT), was explored.

View Article and Find Full Text PDF