In natural ecosystems, the (bio)availability of arsenic and phosphorus is greatly controlled by their interactions with metal (hydr)oxides and organic matter. Humic substances (HS), encompassing humic acids (HA) and fulvic acids (FA), constitute the primary form of organic matter. In this study, batch adsorption experiments were conducted and integrated with the NOM-CD model to achieve a molecular-level understanding of HS on the competitive interactions among arsenite, arsenate, and phosphate on goethite surfaces.
View Article and Find Full Text PDFAutonomous nanorobots represent an advanced tool for precision therapy to improve therapeutic efficacy. However, current nanorobotic designs primarily rely on inorganic materials with compromised biocompatibility and limited biological functions. Here, we introduce enzyme-powered bacterial outer membrane vesicle (OMV) nanorobots.
View Article and Find Full Text PDFMotile microrobots open a new realm for disease treatment. However, the concerns of possible immune elimination, targeted capability and limited therapeutic avenue of microrobots constrain its practical biomedical applications. Herein, a biogenic macrophage-based microrobot loaded with magnetic nanoparticles and bioengineered bacterial outer membrane vesicles (OMVs), capable of magnetic propulsion, tumor targeting, and multimodal cancer therapy is reported.
View Article and Find Full Text PDFA simple and efficient enantioselective discrimination method, especially the chirality-label-free discrimination method, for the recognition of chiral small molecules with high resolution and wide applicability has been urgently desired. Herein, achiral Au/-aminothiophenol (PATP) substrates were prepared to link the enantiomers via coupling reactions for constructing the enantioselective discrimination system. The resultant Au/PATP/enantiomer systems displayed charge-transfer (CT)-induced surface-enhanced Raman scattering (SERS) spectra that offered distinguishable information for the systems with different chirality.
View Article and Find Full Text PDFBackground: Nanosized bacterial outer membrane vesicles (OMVs) secreted by Gram-negative bacteria have emerged as a novel antitumor nanomedicine reagent due to their immunostimulatory properties. The encapsulated bacterial composition in OMVs can be edited manipulating bioengineering technology on paternal bacteria, allowing us to design an ingenious antitumor platform by loading the Polybia-mastoparan I (MPI) fusion peptide into OMVs.
Methods: OMVs containing the MPI fusion peptide were obtained from bioengineered transformed with recombinant plasmid.
MicroRNAs (miRNAs) play a vital role in improving meat quality by binding to messenger RNAs (mRNAs). We performed an integrated analysis of miRNA and mRNA expression profiling between bulls and steers based on the differences in meat quality traits. Fat and fatty acids are the major phenotypic indices of meat quality traits to estimate between-group variance.
View Article and Find Full Text PDF