98%
921
2 minutes
20
Humic acid (HA) enhances colloidal transport in porous media, yet the mechanisms by which the HA adsorption conformation affects colloid transport remain unclear. This study investigated the influence of HA on the transport of petroleum-hydrocarbon-contaminated soil colloids (TPHs-SC) in saturated sand columns. The presence of TPHs on the colloidal surface occupied adsorption sites, hindering HA from forming a horizontal adsorption conformation, as observed on uncontaminated soil colloids (SC). Instead, a vertical adsorption conformation was formed, reducing the overall adsorption of HA. Vertically adsorbed HA increased the colloidal diffuse double-layer potential and extended the Derjaguin-Landau-Verwey-Overbeek energies between colloids and water-bearing media. This was evidenced by higher ζ potentials (-28.5 to -34.0 mV) and enhanced TPHs-SC transport compared to SC (ζ potentials ranging from -25.2 to -29.5 mV) in the presence of HA, particularly under alkaline conditions. Additionally, weak van der Waals and electrostatic interactions between TPHs near colloidal surfaces and free HA/TPHs formed a zonal distribution, facilitating the cotransport of colloids with TPHs. These findings underscore the significance of the HA adsorption conformation in TPHs-SC transport and provide insights into the critical mechanisms from an environmental structural chemistry perspective.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.4c11233 | DOI Listing |
Org Lett
September 2025
School of Pharmaceutical and Chemical Engineering and Institute for Advanced Studies, Taizhou University, 1139 Shifu Road, Taizhou, Zhejiang 318000, China.
Here, intramolecular hydrogen bond (IMHBs)-induced rigidity is used for the first time to synthesize macrocyclic arenes. Calix[]azanediyldibenzoates (C[]A, where = 3, 4, or 5) are synthesized through a one-step condensation reaction between dimethyl 2,2'-azanediyldibenzoate and paraformaldehyde. Compared to the monomer, the macrocycles exhibit a fast and significant acidochromic response due to the intramolecular charge transfer that is boosted by the synergistic effect of their adsorption and protonation.
View Article and Find Full Text PDFJ Biosci Bioeng
September 2025
Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan.
Blood purification using immunoadsorbent columns is a therapeutic strategy for removing pathogenic autoantibodies in autoimmune diseases. Currently available columns have limitations: Trp/Phe columns offer cost-effectiveness and sterilizability, but lack antigen specificity and have limited capacity to remove diverse pathogenic autoantibodies; whereas Protein A/peptide/anti-human IgG columns target all antibodies, regardless of pathogenicity, limiting specificity, and often require sterile production due to low stability under sterilization conditions, except for peptide ligands. Full-length autoantigen-immobilized immunoadsorbent columns have great potential to specifically adsorb targeted autoantibodies, because autoantibodies recognize diverse epitopes that vary among individuals.
View Article and Find Full Text PDFJ Chem Inf Model
September 2025
Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100864, China.
Existing methods for adsorption energy prediction primarily focus on individual molecules or static molecular pairs, lacking the capabilities to model the diverse spatial configurations found in complex solution systems. While traditional data sets are static, dynamic systems explore a vast conformational space over time. This paper introduces the Multi-Temporal Solution System (MTSS) data set containing 500,000 temporally resolved configurations (3D atomic coordinates + adsorption energy labels) across five solvents.
View Article and Find Full Text PDFJ Chem Phys
September 2025
Chemistry and Forensic Science, School of Natural Sciences, University of Kent, Park Wood Rd, Canterbury CT2 7NH, United Kingdom.
Self-assembled monolayers (SAMs) of alkanethiols on gold surfaces are important for various technological applications, such as electroanalytical sensors, organic electronic devices, and catalysts. However, providing a consistent computational description of the unique structural features of these SAMs, such as adsorption patterns, chain conformations, and superlattice arrangements, is challenging, particularly within a versatile computational framework that can simulate both the structural features of these systems and their irradiation-driven chemical transformations. This study systematically analyzes molecular mechanics force field parameters for bonded and nonbonded (van der Waals and electrostatic) interactions in alkanethiol SAMs with different terminal groups.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2025
Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany.
A growing interest towards all-organic electronics emphasized the importance of interfaces between the functional components of such devices. In particular, the interaction between the dielectric and semiconductor plays a critical role in device functionality, with strong dependency of charge carrier accumulation and mobility on semiconductor molecular arrangement. We report on the beneficial adsorption conformation with a nearly upright standing molecular orientation of a 2-tridecyl-[1]benzothieno[3,2-][1]benzothiophene (C-BTBT) semiconductor monolayer deposited on Langmuir-Blodgett-prepared polymethyl methacrylate (PMMA) dielectric films.
View Article and Find Full Text PDF