Charged two-dimensional nanosheet-assembled membranes exhibit considerable promise for sustainable osmotic energy harvesting. However, conventional techniques such as filtration often lead to uncontrollable nanostructure geometries, which can substantially diminish the ion regulation efficiency of the membranes. In this work, we developed a novel microfluidic-mediated oriented nanoengineering approach for the continuous construction of highly oriented bacterial cellulose nanofiber (BCNF)/MXene composite membranes.
View Article and Find Full Text PDFInt J Biol Macromol
June 2025
The development of biomass-derived aerogel fibers for thermal insulation via wet spinning requires precise structural control to optimize performance. This study aims to regulate the molecular assembly of cellulose nanounits to engineer regenerated cellulose aerogel fibers (RCAFs) with enhanced insulating properties while reducing energy consumption. By leveraging acid-coagulation baths with varying H concentrations during wet spinning, we manipulated cellulose chain aggregation to tailor pore size distribution within RCAFs.
View Article and Find Full Text PDFObjective: Lymph node metastasis (LNM) critically impacts the prognosis and treatment decisions of cervical cancer patients. The accuracy and sensitivity of current imaging techniques, such as CT and MRI, are limited in assessing lymph node status. This study aims to develop a more accurate and efficient method for predicting LNM.
View Article and Find Full Text PDFInterface evaporation-driven hydroelectric systems integrating water purification and energy collection offer the potential for sustainable agricultural irrigation. However, achieving high evaporation rates and efficient energy harvesting poses challenges, particularly in optimizing evaporation and water transport. This study develops a gradient-aligned structured aerogel (GA aerogel), composed of biomass materials such as cellulose and chitosan, which utilizes efficient water transport through aligned cellulose channels, unique ion management in nanoscale channels, and chitosan's ability to reduce evaporation energy consumption, thereby enhancing water and energy harvesting performance.
View Article and Find Full Text PDFThe development of antibacterial sponges with both high water-absorbing and mechanical properties is highly desirable for attaining efficient hemostasis and closure of noncompressible wounds, but remains challenging. General methods, such as increasing porosity, to improve the water absorption of sponges inevitably compromise their mechanical properties. Herein, a chitin (CT)/quaternized chitosan (QCS) sponge with the desirable properties was fabricated by freeze-drying the chemically and physically dual cross-linked CT/QCS hydrogel with enhanced hydrophilicity.
View Article and Find Full Text PDFLightweight, nanoporous aerogel fibers are crucial for personal thermal management and specialized heat protection. However, wet-spinning methods, exemplified by aramid aerogels, inevitably form a dense outer layer, significantly reducing the volume fraction of efficient thermal barrier nanovoids and limiting the development of ultimate thermal resistance in fibers. Herein, we develop a microfluidic spinning method to prepare gradient all-nanostructure aramid aerogel fibers (GAFs).
View Article and Find Full Text PDFThrough millions of years of evolution, bones have developed a complex and elegant hierarchical structure, utilizing tropocollagen and hydroxyapatite to attain an intricate balance between modulus, strength, and toughness. In this study, continuous fiber silk composites (CFSCs) of large size are prepared to mimic the hierarchical structure of natural bones, through the inheritance of the hierarchical structure of fiber silk and the integration with a polyester matrix. Due to the robust interface between the matrix and fiber silk, CFSCs show maintained stable long-term mechanical performance under wet conditions.
View Article and Find Full Text PDFBackground: A validated prognostic index for the outcome of patients with advanced high-grade serous ovarian cancer (HGSOC) undergoing neoadjuvant chemotherapy (NACT) remains elusive. To address this need, we developed an ovarian neoadjuvant chemotherapy prognostic index (ONCPI) to improve predictive accuracy.
Methods: We encompassed an analysis of the clinicopathological characteristics of patients with advanced HGSOC who were administered platinum-based NACT.
Food safety is vital to human health, necessitating the development of nondestructive, convenient, and highly sensitive methods for detecting harmful substances. This study integrates cellulose dissolution, aligned regeneration, in situ nanoparticle synthesis, and structural reconstitution to create flexible, transparent, customizable, and nanowrinkled cellulose/Ag nanoparticle membranes (NWCM-Ag). These three-dimensional nanowrinkled structures considerably improve the spatial-electromagnetic-coupling effect of metal nanoparticles on the membrane surface, providing a 2.
View Article and Find Full Text PDFIn light of the limitations of the current piezoelectric energy harvesters and the demand for self-power supply in wireless sensor nodes, a novel positive feedback piezoelectric energy harvester based on nonlinear magnetic coupling is proposed. The operational characteristics of this energy harvester are investigated from three perspectives: theory, simulation, and experiment. First, a nonlinear electromechanical coupling mathematical model that describes the dynamic response of the energy harvester system is established by combining the Hamilton variational principle with the piezoelectric theory.
View Article and Find Full Text PDFThe facile modification of cotton fabrics for excellent self-cleaning, oil-water separation, and antibacterial activity is of great interest for multifunctional requirements. Herein, a durable, robust, fluorine-free multifunctional cotton fabric was fabricated via in-situ growing zeolitic imidazolate framework-67 (ZIF-67) on the cotton surface, followed by depositing hydrophobic SiO (H-SiO) nanoparticles synthesized via an improved Stöber reaction. Meanwhile, the abundant hydroxyls of the cotton fabrics provided the necessary ion interaction sites for the uniform deposition of micro/nanomaterials, confirmed by the visualized Raman imaging technology.
View Article and Find Full Text PDFHealthy, convenient, and aesthetic hair dyeing and styling are essential to fashion trends and personal-social interactions. Herein, we fabricate green, scalable, and aesthetic regenerated cellulose filaments (ACFs) with customizable iridescent colors, outstanding mechanical properties, and water-triggered moldability for convenient and fashionable artificial hairdressing. The fabrication of ACFs involves cellulose dissolution, cross-linking, wet-spinning, and nanostructured orientation.
View Article and Find Full Text PDFL. has an important medicinal and economic value in traditional perennial Chinese medicine. However, due to its unique growth characteristics, during cultivation it is highly susceptible to disease.
View Article and Find Full Text PDFPhenolic acids are one of the major secondary metabolites accumulated in with various pharmacological activities. Moderate drought stress can promote the accumulation of phenolic acids in , while the mechanism remains unclear. Therefore, we performed transcriptome sequencing of under drought treatment.
View Article and Find Full Text PDFNanocellulose has received considerable attention in diverse research fields owing to its unique nanostructure-mediated physicochemical properties. However, classical acid hydrolysis usually destroys the microstructural integrity of cellulose, leading to the violent dissociation of cellulose into low-dimensional nanofibers and limiting the formation of intact structures with high specific surface areas. Herein, we have optimized the methodology of dilute acid vapor hydrolysis combined with the enzymatic hydrolysis (DAVE) method and investigated the pore formation mechanism of cellulose nanomesh (CNM).
View Article and Find Full Text PDFStretchable wearable thermoelectric (TE) generators (WTEGs) without compromising output performance for real wearables have attracted much attention recently. Herein, a 3D thermoelectric generator with biaxial stretchability is constructed on the device level. Ultraflexible inorganic Ag/Ag Se strips are sewn into the soft purl-knit fabric, in which the thermoelectric legs are aligned in the direction of vertical heat flux.
View Article and Find Full Text PDFInt J Biol Macromol
June 2023
The design and development of green and efficient supported catalysts is the frontier direction in the field of green synthesis, which conforms to the strategic concept of green sustainable chemistry and "carbon neutrality". Herein, we used a renewable resource chitosan (CS) derived from seafood wastes of chitin as carriers to design two different chitosan-supported palladium (Pd) nano-catalysts through different activation methods. The Pd particles were firmly and uniformly dispersed on the chitosan microspheres due to the interconnected nanoporous structure and functional groups of chitosan, proved by diverse characterizations.
View Article and Find Full Text PDFCarbohydr Polym
July 2023
The addition of urea in pre-cooled alkali aqueous solution is known to improve the dope stability of cellulose solution. However, its thermodynamic mechanism at a molecular level is not fully understood yet. By using molecular dynamics simulation of an aqueous NaOH/urea/cellulose system using an empirical force field, we found that urea was concentrated in the first solvation shell of the cellulose chain stabilized mainly by dispersion interaction.
View Article and Find Full Text PDFSuper strength and high barrier properties are the bottleneck of the application of cellulose film materials. Herein, it is reported a flexible gas barrier film with nacre-like layered structure, in which 1D TEMPO-oxidized nanocellulose (TNF) and 2D MXene self-assembled to form an interwoven stack structure with 0D AgNPs filling the void space. The strong interaction and dense structure endowed TNF/MX/AgNPs film with mechanical properties far superior to PE films and acid-base stability.
View Article and Find Full Text PDFTo provide evidence-based medicine references for formulating prevention and control policies in plateau areas, we explore the characteristics of anemia patients in Tibet (the plateau areas of China), especially those located at an altitude above 4500 m. We collected clinical data from 379 Tibetan anemia patients over the age of 18 years. We found those female patients accounted for the majority of Tibetan anemia patients.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2022
The poor interfacial adhesion between silk fiber and polyester species remains a critical problem for the optimal mechanical performance of silk-reinforced polyester composites. Here, we investigated in quantitative terms the interfacial properties between natural silk fibers and polycaprolactone (PCL) at nano-, micro-, and macroscales and fabricated continuous silk-PCL composite filaments by melt extrusion and drawing processing of PCL melt at 100, 120, and 140 °C. () silk, () silk, and polyamide6 (PA6) fiber were compared to the composite with PCL.
View Article and Find Full Text PDFThermal insulating fibers can effectively regulate the human body temperature and decrease indoor energy consumption. However, designing super thermal insulating fibers integrating a sponge and aerogel structure based on biomass resources is still a challenge. Herein, a flow-assisted dynamic dual-cross-linking strategy is developed to realize the steady fabrication of regenerated all-cellulose graded sponge-aerogel fibers (CGFs) in a microfluidic chip.
View Article and Find Full Text PDFIn nature, stiffness-changing behavior is essential for living organisms, which, however, is challenging to achieve in synthetic materials. Here, a stiffness-changing smart material, through developing interchangeable supramolecular configurations inspired from the dermis of the sea cucumber, which shows extreme, switchable mechanical properties, is reported. In the hydrated state, the material, possessing a stretched, double-stranded supramolecular network, showcases a soft-gel behavior with a low stiffness and high pliability.
View Article and Find Full Text PDFMicroRNA156 (miR156) is an important conserved miRNA family in plants. Recently, we revealed VvmiR156a could involve in the modulation of gibberellin (GA)-mediated flower and berry development process of grapevine (Vitis vinifera L.).
View Article and Find Full Text PDF