Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Lightweight, nanoporous aerogel fibers are crucial for personal thermal management and specialized heat protection. However, wet-spinning methods, exemplified by aramid aerogels, inevitably form a dense outer layer, significantly reducing the volume fraction of efficient thermal barrier nanovoids and limiting the development of ultimate thermal resistance in fibers. Herein, we develop a microfluidic spinning method to prepare gradient all-nanostructure aramid aerogel fibers (GAFs). Benefiting from the simultaneous shear alignment and diffusion dilution of a good solvent within the channels, the precursor gel fibers assemble into a structure with a sparse exterior and dense interior, which reverses during supercritical drying to form sheath and core layers with average pore diameters of 150 nm and 600 nm, respectively. Experiments and simulations reveal that the gradient nanostructure creates high interfacial thermal resistance at heat transfer interfaces, resulting in a radial thermal conductivity as low as 0.0228 W m K, far below that of air and wet-spun aerogel fibers. Moreover, GAF's unique nano-entangled network efficiently dissipates stress, achieving exceptionally high tensile strength (29.5 MPa) and fracture strain (39.2%). This work establishes a correlation between multiscale nanostructures and superlative performance, thereby expanding the scope of aerogel applications in intricate environments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11893758 | PMC |
http://dx.doi.org/10.1038/s41467-025-57646-4 | DOI Listing |