Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In nature, stiffness-changing behavior is essential for living organisms, which, however, is challenging to achieve in synthetic materials. Here, a stiffness-changing smart material, through developing interchangeable supramolecular configurations inspired from the dermis of the sea cucumber, which shows extreme, switchable mechanical properties, is reported. In the hydrated state, the material, possessing a stretched, double-stranded supramolecular network, showcases a soft-gel behavior with a low stiffness and high pliability. Upon the stimulation of ethanol to transform into the coiled supramolecular configuration, it self-adjusts to a hard state with nearly 500-times enhanced stiffness from 0.51 to 243.6 MPa, outstanding load-bearing capability (over 35 000 times its own weight), and excellent puncture/impact resistance with a specific impact strength of ≈116 kJ m (g cm ) (higher than some metals and alloys such as aluminum, and even comparable to the commercially available protective materials such as D3O and Kevlar). Moreover, this material demonstrates reconfiguration-dependent self-healing behavior and designable formability, holding great promise in advanced engineering fields that require both high-strength durability and good formability. This work may open up a new perspective for the development of self-regulating materials from supramolecular-scale configuration regulation.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202107857DOI Listing

Publication Analysis

Top Keywords

smart material
8
stiffness-switchable biomimetic
4
biomimetic smart
4
material
4
material enabled
4
supramolecular
4
enabled supramolecular
4
supramolecular reconfiguration
4
reconfiguration nature
4
nature stiffness-changing
4

Similar Publications

Accelerating Transition State Search and Ligand Screening for Organometallic Catalysis with Reactive Machine Learning Potential.

J Chem Theory Comput

September 2025

State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Department of Pharmaceutical Sciences, Institute of Chemical Process Systems Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.

Organometallic catalysis lies at the heart of numerous industrial processes that produce bulk and fine chemicals. The search for transition states and screening for organic ligands are vital in designing highly active organometallic catalysts with efficient reaction kinetics. However, identifying accurate transition states necessitates computationally intensive quantum chemistry calculations.

View Article and Find Full Text PDF

The unregulated use and improper disposal of active pharmaceutical ingredients (APIs), particularly phenylbutazone (PBZ), are contaminating water resources and posing serious risks to the food chain. PBZ is a nonsteroidal anti-inflammatory drug (NSAID) commonly used for treating pain and fever in animals, and its persistence in the environment due to inadequate waste management has become a cause of concern. To address this, we report the fabrication of benzimidazole-based self-assembled nanomicelles (R2 NMs) for selective detection and removal of PBZ.

View Article and Find Full Text PDF

Inspired by the rigid exoskeleton and elastic inner tissues of crustaceans, a bilayer gel integrating high-strength rigidity and soft cushioning with high interfacial adhesion (1060 ± 40 J m ) is developed via a stepwise solid-liquid phase crosslinking strategy. Herein, a prefrozen high-concentration polyvinyl alcohol (PVA) solution forms a solid-state structural framework, while a subsequently cast low-concentration PVA solution generates a flexible layer. Partial thawing of the frozen gel during casting triggers molecular chain interpenetration at the interface, synergistically enhanced by controlled molecular penetration, freeze-thaw cycles, and salt-induced crystallization.

View Article and Find Full Text PDF

Solar-Enhanced Blue Energy Conversion via Photo-electric/thermal in GO/MoS/CNC Nanofluidic Membranes.

Small

September 2025

Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, P. R. China.

In recent years, light-controlled ion transport systems have attracted widespread attention, however, the use of photoresponsive materials suffers from rapid carrier recombination, thermal field limitations, and narrow spectral response, which significantly restricts their performance enhancement in osmotic energy conversion. This study innovatively couples "blue energy" (osmotic energy) with "green energy" (solar energy), assembling graphene oxide/molybdenum disulfide/sulfonated cellulose nanocrystal (GO/ MoS/CNC) ion-channel membranes. Under solar irradiation, the energy level difference between MoS and GO effectively suppresses the recombination of photogenerated carriers, generating more active electrons and significantly enhancing the carrier density, thereby improving the current flux and ion selectivity.

View Article and Find Full Text PDF

Achieving superior energy storage performance in dielectric materials under low electric fields remains a challenge. Most recent advancements require high fields that limit device applicability. Developing dielectric capacitors with high recoverable energy density (W), efficiency (η), and energy-storage coefficient (W/E) at low/moderate fields is critical for safer, compact, and durable electronics.

View Article and Find Full Text PDF