Accelerating Transition State Search and Ligand Screening for Organometallic Catalysis with Reactive Machine Learning Potential.

J Chem Theory Comput

State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Department of Pharmaceutical Sciences, Institute of Chemical Process Systems Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.

Published: September 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Organometallic catalysis lies at the heart of numerous industrial processes that produce bulk and fine chemicals. The search for transition states and screening for organic ligands are vital in designing highly active organometallic catalysts with efficient reaction kinetics. However, identifying accurate transition states necessitates computationally intensive quantum chemistry calculations. In this work, a reactive machine learning potential (RMLP) model is developed to accelerate transition state optimizations and ligand screening for organometallic catalysis based on an automated transition state database construction method and a higher-order equivariant message passing neural network. In case studies involving the ethylene hydrogenation reaction catalyzed by organometallic catalysts, RMLP rapidly predicts potential energy surfaces along intrinsic reaction coordinate paths, achieving speeds nearly 3 orders of magnitude faster than those of rigorous quantum chemistry calculations. Meanwhile, it maintains comparable accuracy with a root-mean-square deviation of 0.307 Å for transition state geometries and a mean absolute error of 0.871 kJ·mol for reaction barriers on the external test set, significantly outperforming semiempirical quantum chemistry methods. Our RMLP model offers an effective alternative to both rigorous and semiempirical quantum chemistry approaches for rapid and precise transition state optimizations, facilitating high-throughput screening of advanced organometallic catalyst ligands.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jctc.5c01047DOI Listing

Publication Analysis

Top Keywords

transition state
20
quantum chemistry
16
organometallic catalysis
12
ligand screening
8
screening organometallic
8
reactive machine
8
machine learning
8
learning potential
8
transition states
8
organometallic catalysts
8

Similar Publications

A screening of organic dyes has led to the discovery of gallocyanine as an organocatalyst for the halogenation of a variety of functionalized pyrazoles, indazoles, and aromatics. This work provides an example of a mild organocatalyst that does not require light, oxidizing agents, transition-metal activation, or high temperatures. Thirty-nine halogenated pyrazoles and indazoles, including pharmaceuticals such as celecoxib, deracoxib, and antipyrine, have been isolated in good to excellent yields using -halosuccinimides as the stoichiometric halogen source with gallocyanine as the catalyst.

View Article and Find Full Text PDF

We show that the ground state of a weakly charged two-dimensional electron-hole fluid in a strong magnetic field is a broken translation symmetry state with interpenetrating lattices of localized vortices and antivortices in the electron-hole-pair field. The vortices and antivortices carry fractional charges of equal sign but unequal magnitude and have a honeycomb-lattice structure that contrasts with the triangular lattices of superconducting electron-electron-pair vortex lattices. We predict that increasing charge density or a weakening magnetic field drives a vortex delocalization transition that would be signaled experimentally by an abrupt increase in counterflow transport resistance.

View Article and Find Full Text PDF

We present a method for probing the quantum capacitance associated with the Rydberg transition of surface electrons on liquid helium using radio-frequency (rf) reflectometry. Resonant microwave excitation of the Rydberg transition induces a redistribution of image charges on capacitively coupled electrodes, giving rise to a quantum capacitance originating from adiabatic state transitions and the finite curvature of the energy bands. By applying frequency-modulated resonant microwaves to drive the Rydberg transition, we systematically measured a capacitance sensitivity of 0.

View Article and Find Full Text PDF

Multistate Ferroelectricity Enabled by Electrically Controlled Phase Transition of Two-Dimensional Ices.

Phys Rev Lett

August 2025

Nanjing University of Aeronautics and Astronautics, State Key Laboratory of Mechanics and Control for Aerospace Structures and Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, Institute of Nano Science, Nanjing, 210016, China.

Multistate ferroelectric polarization holds promise for realizing high-density nonvolatile memory devices, but so far is restricted to a few traditional ferroelectrics. Here, we show that nanoconfined two-dimensional (2D) ferroelectric ice can achieve phase-dependent multistate polarization through extensive classical and ab initio molecular dynamics simulations. An in-plane electric field is found to induce the reversible transition between a low-polarization AA-stacked hexagonal ice phase and an unprecedented high-polarization AB-stacked ice phase, resulting in a four-state ferroelectric switching pathway.

View Article and Find Full Text PDF

Photon-Interfaced Ten-Qubit Register of Trapped Ions.

Phys Rev Lett

August 2025

Universität Innsbruck, Institut für Experimentalphysik, Technikerstrasse 25, 6020 Innsbruck, Austria.

Establishing networks of quantum processors offers a path to scalable quantum computing and applications in communication and sensing. This requires first developing efficient interfaces between photons and multiqubit registers. In this Letter, we show how to entangle each individual matter qubit in a register of ten to a separate traveling photon.

View Article and Find Full Text PDF