98%
921
2 minutes
20
Thermal insulating fibers can effectively regulate the human body temperature and decrease indoor energy consumption. However, designing super thermal insulating fibers integrating a sponge and aerogel structure based on biomass resources is still a challenge. Herein, a flow-assisted dynamic dual-cross-linking strategy is developed to realize the steady fabrication of regenerated all-cellulose graded sponge-aerogel fibers (CGFs) in a microfluidic chip. The chemically cross-linked cellulose solution is used as the core flow, which is passed through two sheath flow channels, containing either a diffusion solvent or a physical cross-linking solvent, resulting in CGFs with a porous sponge outer layer and a dense aerogel inner layer. By regulating and simulating the flow process in the microfluidic chip, CGFs with adjustable sponge thicknesses, excellent toughness (26.20 MJ m), and ultralow thermal conductivity (0.023 W m K) are fabricated. This work provides a new method for fabricating graded biomass fibers and inspires attractive applications for thermal insulation in textiles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.1c03943 | DOI Listing |
J Agric Food Chem
September 2025
Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, Athens 15771, Greece.
An innovative 4D targeted method was developed for the determination of 61 bioactive compounds in royal jelly (RJ) related to their health-promoting properties. The method, apart from high-resolution mass spectrometry, exploits the advantages of vacuum-insulated probe-heated electrospray ionization source (VIP-HESI), reducing thermal degradation, and trapped ion mobility spectrometry (TIMS), improving selectivity and compound identification. The optimization of VIP-HESI ionization parameters using experimental designs showed that the critical parameters were the capillary voltage as well as the probe gas flow rate and temperature.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Key Laboratory of Bio-Based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, China. Electronic address:
With the exhaustion of fossil fuels, prior phase change materials are characterized by such drawbacks as poor thermal conductivity, weak shape stability, and high costs. Therefore, the preparation of phase change materials with brilliant thermal-insulating properties, high thermal conductivity, and leakage-free properties has emerged as a crucial research focus. Herein, a sericultural mulberry branch-derived (SMB) composite phase change material was prepared by deep eutectic solvent pretreated SMB and vacuum-assisted impregnated paraffin wax with cupric oxide (CuO).
View Article and Find Full Text PDFOrg Lett
September 2025
Max Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle, Germany.
Helical nanographenes (NGs) play a crucial role in the development of chiral nanomaterials due to their distinctive optoelectronic and chiroptical properties. Herein, we report the efficient synthesis of two unprecedented azulene-embedded asymmetric triple helical NGs ( and ) with controllable helicene subunit lengths and π-extension. The crystallographic analysis confirms their highly twisted and asymmetric geometries.
View Article and Find Full Text PDFSmall
September 2025
School of Chemistry and Chemical Engineering, Inner Mongolia University of Science and Technology, Baotou, 014010, China.
The application of aerogels in textiles is limited because their poor moisture permeability and mechanical properties. Aerogel flowers with down-like structures for clothing filling are prepared by laser cutting bacterial cellulose. The nanoporous structures of the aerogels maintained excellent heat preservation performance, and the large pores between flowers provided a channel for water vapor transmission.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
School of Chemistry and Physics, Australian Research Council Research Hub in Zero-emission Power Generation for Carbon Neutrality, and Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4000, Australia.
Nanoporous structures play a critical role in a wide range of applications, including catalysis, thermoelectrics, energy storage, gas adsorption, and thermal insulation. However, their thermal instability remains a persistent challenge. Inspired by the extraordinary resilience of tardigrades, an "atomic armor" strategy is introduced to enhance the stability of nanoporous structures.
View Article and Find Full Text PDF