The differentiation of the nitrate reduction pathway is of great significance in the ecosystem, as it determines the occurrence form of ecosystem N. In order to explore the impact and mechanism of different algal dissolved organic nitrogen (DON) and dissolved organic phosphorus (DOP) on differentiation of nitrate (NO-N) reduction pathway, small-scale enclosure experiment was conducted to analyze the DON and DOP composition, nutrient level, microbial community composition and NO-N reduction pathway in ponds with Microcystis and Dolichospermum blooms. The main DON produced by Microcystis included lipids and proteins as well as carbohydrate which were readily degradable, whereas the DOP produced by Dolichospermum predominantly consists of readily degradable forms such as carbohydrate and protein.
View Article and Find Full Text PDFLithium metal negative electrodes are highly promising for high-specific-energy batteries due to their low electrochemical potential and high capacity. However, dendrite growth due to limited Li transport at the interface hinder their performance and safety. Enhancing interfacial Li transport can prevent Li depletion and ensure uniform Li deposition.
View Article and Find Full Text PDFAs a protic impurity, water can severely degrade battery life and pose safety risks. Lowering the HO content in the electrolyte is essential, but it often requires energy-intensive drying technologies. Here, we develop a multifunctional interlayer utilizing dehydrated sepiolite on a commercial polypropylene separator (Sep@PP) to address water-induced challenges in lithium batteries.
View Article and Find Full Text PDFPorcine reproductive and respiratory syndrome (PRRS), which is primarily characterized by respiratory and reproductive dysfunction, is an epidemic disease caused by porcine reproductive and respiratory syndrome virus (PRRSV) that has the potential to economically devastate the global swine industry. Rapid and accurate detection of PRRSV is critical for effective control of PRRS in swine. In this study, a novel one-step, highly sensitive and specific accelerated strand exchange amplification (ASEA) method for the detection of PRRSV was developed.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
April 2025
In order to explore the impact of endogenous organic detritus on differentiation of nitrate reduction pathway and mechanism, our study hypothesizes that the source of organic matter leads to differences in its chemical structure, thus affecting the nitrate reduction pathway. An indoor incubation experiment was conducted by adding different organic detritus from nitrogen-fixing and non-nitrogen-fixing cyanobacteria, green algae, and submerged macrophyte (sediment mixed thoroughly with different algal detritus and topped with 60 cm of water). The chemical components of different organic detritus degradation were mainly composed of aliphatic and aromatic compounds from cyanobacterial detritus as well as from green algae and macrophyte detritus, respectively, but the proportion was entirely different.
View Article and Find Full Text PDFPhotolysis and microbial degradation enabling the rapid mineralization of organic phosphorus constitute the crucial mechanism for phosphorus compensation during algal bloom outbreaks in shallow lakes. This study explored the key pathways of microbial degradation of algae-derived organic phosphorus (ADOP) exacerbated by photolysis through molecular biology techniques. The results showed that photolysis could exacerbate microbial degradation, and the effects on microbial degradation were multifaceted.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
April 2025
Electrolyte chemistries are crucial for achieving high cycling performance and high energy density in lithium metal batteries. The localized high-concentration electrolytes (LHCEs) exhibit good performance in lithium metal batteries. However, understanding how the intermolecular interactions between solvents and diluents in the electrolyte regulate the solvation structure and interfacial layer structure remains limited.
View Article and Find Full Text PDFIn order to clarify the nitrogen (N) and phosphorus (P) regeneration patterns and internal mechanism for initiating and maintaining algal blooms in Lake Taihu, samples (including surface water and sediment) from 8 sites in Lake Taihu were collected for nine times from May 2010 to April 2011, and analyzed for total and labile organic matter, P fractionation and sorption behaviors, extracellular enzymatic activities (EEA), dehydrogenase activity, the respiratory electron transport system activity, and iron in sediment, EEA, N and P species and chlorophyll a (Chl. a) in surface water, as well as N and P species in interstitial water. In Lake Taihu, although severe blooms occurred in both Meiliang Bay and Zhushan Bay, the nutrient regeneration patterns stimulating the initiation and maintenance of algae blooms in these two bays were different.
View Article and Find Full Text PDFIn order to explore the effects of different feed composition on the nutrient level and microbial loop structure in aquaculture ponds, a field simulation experiment in aquaculture ponds was conducted by adding different proportions (0%, 20%, 40% and 60%) of bagasse to fish feed for combined feeding. The addition of bagasse significantly reduced the levels of various forms of nitrogen and phosphorus in the water, especially with the addition of 60% bagasse. In the treatments without addition and with 20% bagasse added, nitrogen and phosphorus levels remained relatively high, which should be attributed to the decomposition of feed and the release of sediment, ultimately stimulating the abundant reproduction of algae.
View Article and Find Full Text PDFDespite significant reductions in phosphorus (P) loads, lakes still experience cyanobacterial blooms. Little is known regarding cellular P regulation in response to P deficiency in widely distributed bloom causing species such as Microcystis. In this study, we investigated changes in P containing and non-P lipids contents and their ratios concomitantly with the determinations of expression levels of genes encoding these lipids in cultural and field Microcystis samples.
View Article and Find Full Text PDFSci Total Environ
May 2024
In shallow lakes, there are complex relationships between lake eutrophication and greenhouse gas emissions that deserve to be studied, which are important for solving lake eutrophication, slowing down climate warming, and reducing carbon emissions. In order to explore the relationship and mechanism between eutrophication and greenhouse gases (GHGs), the net GHGs emission flux and transformation of carbon, and nitrogen in 45 shallow freshwater lakes were investigated from May to September 2022. Eutrophication facilitated potential denitrification rate (D) without increasing nitrous oxide (NO) production based on the significantly positive relationship between eutrophication and D.
View Article and Find Full Text PDF() is a prevalent enteric bacterium and a necessary organism to monitor for food safety and environmental purposes. Developing efficient and specific methods is critical for detecting and monitoring viable due to its high prevalence. Conventional culture methods are often laborious and time-consuming, and they offer limited capability in detecting potentially harmful viable but non-culturable in the tested sample, which highlights the need for improved approaches.
View Article and Find Full Text PDFWater Res
February 2024
Understanding the long-term variations in basins that undergo large-scale hydroelectric projects is crucial for effective dam operation and watershed management. In this study, comprehensive analyses were conducted on a dataset spanning over 20 years (1998-2018) of hydrological regime and physicochemical parameters from the Yangtze River basin to evaluate the potential impacts of the Three Gorges Dam. Water level significantly increased from 128.
View Article and Find Full Text PDFSalmonella is a common intestinal pathogen that can cause food poisoning and intestinal disease. The high prevalence of Salmonella necessitates efficient and sensitive methods for its identification, detection, and monitoring, especially of viable Salmonella. Conventional culture methods need to be more laborious and time-consuming.
View Article and Find Full Text PDFSwimming microrobots guided in the circulation system offer considerable promise in precision medicine but currently suffer from problems such as limited adhesion to blood vessels, intensive blood flow, and immune system clearance-all reducing the targeted interaction. A swimming microrobot design with clawed geometry, a red blood cell (RBC) membrane-camouflaged surface, and magnetically actuated retention is discussed, allowing better navigation and inspired by the tardigrade's mechanical claw engagement, coupled to an RBC membrane coating, to minimize blood flow impact. Using clinical intravascular optical coherence tomography in vivo, the microrobots' activity and dynamics in a rabbit jugular vein was monitored, illustrating very effective magnetic propulsion, even against a flow of ~2.
View Article and Find Full Text PDFRegime shifts between nitrogen (N) and phosphorus (P) limitation, which trigger cyanobacterial succession, occur in shallow eutrophic lakes seasonally. However, the underlying mechanism is not yet fully illustrated. We provide a novel insight to address this from interactions between sediment P and nitrification through monthly field investigations including 204 samples and microcosm experiments in Lake Chaohu.
View Article and Find Full Text PDFAlgal extracellular organic matter (EOM) metabolites exert considerable impact on the carbon (C), nitrogen (N), and phosphorus (P) cycles mediated by attached bacteria. Field investigations were conducted in two ponds to explore the relationship among EOM metabolites from Microcystis and Dolichospermum, co-occurring microbes, and nutrient recycling from April 2021 to December 2021. Microcystis blooms primarily produced more complex bound EOM (bEOM) metabolites with many amino acid components, which facilitated bacterial colonization and provided sufficient substrates for ammonification.
View Article and Find Full Text PDFTo explore the effect of different types of dissolved organic matter (DOM) decomposition on nutrient cycling pathways and the microbial loop, four lakes with different DOM sources were investigated monthly. In Lake Tangxun, decay released highly labile dissolved organic nitrogen into the water column. This induced bacterial organic nitrogen decomposition, as indicated by the increased abundance of , , , and as well as aminopeptidase activity.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2023
Deficiency in human coagulation factor VIII (FVIII) causes hemophilia A (HA). Patients with HA may suffer from spontaneous bleeding, which can be life-threatening. Recombinant FVIII (rFVIII) is an established treatment and prevention agent for bleeding in patients with HA.
View Article and Find Full Text PDFThe elaborate design of powerful Li-S binders with extended-functions like polysulfides adsorption/catalysis and Li hopping/transferring in addition to robust adhesion-property has remained a challenge. Here, an in situ cathode-interweaving strategy based on metalloporphyrin based covalent-bonding organic polymer (M-COP, M = Mn, Ni, and Zn) binders is reported for the first time. Thus-produced functional binders possess excellent mechanical-strengths, polysulfides adsorption/catalysis, and Li hopping/transferring ability.
View Article and Find Full Text PDFEffective screening feed substitutes for improving water quality in aquaculture systems has become a trending research topic now. In this study, three typical organic agricultural wastes, including sugar cane bagasse (SC), coconut shell powder (CS), and corn cob powder (CC), were selected to evaluate their potential roles on the optimization of water quality and natural bait compared to aquafeeds. Fish feed resulted in the highest growth rate of fish but the worst water quality.
View Article and Find Full Text PDFThe dissimilatory nitrate (NO) reduction processes (DNRPs) play an important role in regulating the nitrogen (N) balance of aquatic ecosystem. Organic carbon (OC) and sulfur are important factors that influence the DNRPs. In this study, we investigated the effects of sulfur cycle and enzyme activity on DNRPs in the natural and human-modified heterotrophic sediments.
View Article and Find Full Text PDFWe introduce herein an effective way for continuous delivery and position-switchable trapping of nanoparticles via field-effect control on hybrid electrokinetics (HEK). Flow field-effect transistor exploiting HEK delicately combines horizontal linear electroosmosis and transversal nonlinear electroosmosis of a shiftable flow stagnation line (FSL) on gate terminals under DC-biased AC forcing. The microfluidic nanoparticle concentrator proposed herein makes use of a simple device geometry, in which an individual or a series of planar metal strips serving as gate electrode (GE) are subjected to a hybrid gate voltage signal and arranged in parallel between a pair of 3D driving electrodes.
View Article and Find Full Text PDFTwelve sampling sites from two basins of Lake Chaohu were studied seasonally from June 2020 to April 2021 in Hefei City (China) to better understand the effect of organic carbon (C) quantity and composition on nitrate (NO-N) reduction pathways. Serious algal bloom in the west basin of Lake Chaohu (WLC) resulted in higher organic C accumulation and NO-N deficiency in interstitial water compared to the east basin of Lake Chaohu (ELC), jointly leading to a high C/NO-N ratio. This triggered dissimilatory nitrate reduction to ammonium (DNRA) over denitrification in terms of higher DNRA rate, nitrogen retaining index (NRI), and nrfA gene abundance mediating DNRA.
View Article and Find Full Text PDF