The differentiation of the nitrate reduction pathway is of great significance in the ecosystem, as it determines the occurrence form of ecosystem N. In order to explore the impact and mechanism of different algal dissolved organic nitrogen (DON) and dissolved organic phosphorus (DOP) on differentiation of nitrate (NO-N) reduction pathway, small-scale enclosure experiment was conducted to analyze the DON and DOP composition, nutrient level, microbial community composition and NO-N reduction pathway in ponds with Microcystis and Dolichospermum blooms. The main DON produced by Microcystis included lipids and proteins as well as carbohydrate which were readily degradable, whereas the DOP produced by Dolichospermum predominantly consists of readily degradable forms such as carbohydrate and protein.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
April 2025
In order to explore the impact of endogenous organic detritus on differentiation of nitrate reduction pathway and mechanism, our study hypothesizes that the source of organic matter leads to differences in its chemical structure, thus affecting the nitrate reduction pathway. An indoor incubation experiment was conducted by adding different organic detritus from nitrogen-fixing and non-nitrogen-fixing cyanobacteria, green algae, and submerged macrophyte (sediment mixed thoroughly with different algal detritus and topped with 60 cm of water). The chemical components of different organic detritus degradation were mainly composed of aliphatic and aromatic compounds from cyanobacterial detritus as well as from green algae and macrophyte detritus, respectively, but the proportion was entirely different.
View Article and Find Full Text PDFRecently, the cryogel as a special type of hydrogel was widely used in the field of medicine due to its porous structure and good biocompatibilit. However, great challenges existed for its irregular pore size and incompressible property, limiting its application in other fields. In this study, a novel silk fibroin-based cryogel (named SF@PVA/CS) with regulable pore size, excellent elasticity and durability was constructed using a green dual-directional crosslink strategy.
View Article and Find Full Text PDFFreshwater pollution and shortage have become an imminent problem. Therefore, it is necessary to develop a multi-functional membrane for the production of fresh water. In this work, the regenerated lignocellulose modified cotton fabric was developed as a novel, multi-functional and degradable membrane (LCPT@CF) for efficient oil-water separation and solar steam generation for the first time.
View Article and Find Full Text PDFCarbohydr Polym
January 2023
At present, the research and development of adsorbents for oil/water separation are mostly focused on polymer materials. The third generation of aerogels are made from nanocellulose prepared from abundant and sustainable cellulose. At present, there is concern regarding the use of nanocellulose aerogels (NAs) in oil/water separation.
View Article and Find Full Text PDFTo date, most existing engineering materials have difficulty simultaneously separating oil/water and removing heavy metals from complex oily wastewater. In response to this challenge, a novel multifunctional composite hydrogel membrane (named PVA-CS-LDHs) was fabricated by incorporating chitosan (CS) and nanohydrotalcite (LDHs) into a polyvinyl alcohol (PVA) hydrogel. This material was developed using an easy yet versatile strategy of freezing and salting-out, which can enable the formation of a PVA-CS-LDH hydrogel membrane in one step and endow the PVA-CS-LDHs with high strength, excellent stretchability, favourable shape recoverability, and an ideal 3D microstructure.
View Article and Find Full Text PDFTwelve sampling sites from two basins of Lake Chaohu were studied seasonally from June 2020 to April 2021 in Hefei City (China) to better understand the effect of organic carbon (C) quantity and composition on nitrate (NO-N) reduction pathways. Serious algal bloom in the west basin of Lake Chaohu (WLC) resulted in higher organic C accumulation and NO-N deficiency in interstitial water compared to the east basin of Lake Chaohu (ELC), jointly leading to a high C/NO-N ratio. This triggered dissimilatory nitrate reduction to ammonium (DNRA) over denitrification in terms of higher DNRA rate, nitrogen retaining index (NRI), and nrfA gene abundance mediating DNRA.
View Article and Find Full Text PDFSuperhydrophobic sponges have considerable potential for oil/water separation. Most of the methods used for superhydrophobic modification of sponges require toxic or harmful solvents, which have the drawbacks of hazardous to environment, expensive, and complex to utilize. Moreover, the hydrophobic layer on the surface of sponge is often easily destroyed.
View Article and Find Full Text PDFMetal microspheres doping porous carbon (MMPC), which was prepared using in-situ pyrolysis reduction strategy, could enhance the thermal conductivity of shape-stabilized phase change material (ss-PCM) prepared by MMPC as the matrix. However, in previous studies that were reported, the preparation of MMPC needed to synthesize porous carbon by pyrolysis firstly, and then porous carbon adsorbed metal ions was pyrolyzed again to obtain MMPC, which was tedious and energy-prodigal. In this study, a one-step pyrolysis strategy was developed for the synthesis of MMPC through the pyrolyzation of wheat bran adsorbed copper ions, and the copper microspheres doping wheat bran biochar (CMS-WBB) was prepared.
View Article and Find Full Text PDFIn this study, silver microspheres (SMS) were introduced into cotton stalk porous-carbon (CSP) to prepare silver microsphere doping porous-carbon (SMS-CSP), and then SMS-CSP was used as the matrix of polyethylene glycol (PEG) to synthesize shape-stable phase change material of PEG/SMS-CSP. It was found that the introduction of SMS into CSP could not only greatly improve the loading capacity of the porous-carbon for PEG, but also could increase the thermal conductivity of PEG/SMS-CSP. Additionally, the method of introducing SMS into porous-carbon had the advantages of environmental protection and simple operation.
View Article and Find Full Text PDFCopper microsphere hybrid mesoporous carbon (MPC-Cu) was synthesized by the pyrolysis of polydopamine microspheres doped with copper ions that were prepared using a novel, facile and simple one-step method of dopamine biomimetic polymerization and copper ion adsorption. The resulting MPC-Cu was then used as a supporter for polyethylene glycol (PEG) to synthesize shape-stabilized phase change materials (PEG/MPC-Cu) with enhanced thermal properties. PEG/MPC-Cu was studied by scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, thermogravimetric analysis, differential scanning calorimetry and thermal constant analysis.
View Article and Find Full Text PDFThis study evaluated the Pb(II) sorption capacity of jujube pit biochar (JPB) in aqueous solution, which was derived from jujube pit by pyrolysis and used as a promising and economical adsorbent. More importantly, the utilization of JPB could realize the recycling of agricultural residues. The JPB was characterized using conventional science technologies, including SEM, BET and FT-IR, and the sorption capacity of JPB for lead ions was investigated according to different adsorption parameters, such as the kinetics data, solution pH, isotherms data, coexisting ions of Na and K, desorption and reusability, and solution temperature.
View Article and Find Full Text PDFPolydopamine microspheres (PDAMs), synthesized using a biomimetic method, were used as a matrix for polyethylene glycol (PEG) to develop a novel high-efficient form-stable phase change material (PEG/PDAM) using a simple vacuum impregnation strategy. The PDAMs were first used as a support for the organic phase change materials, and the biomimetic synthesis of the PDAMs had the advantages of easy operation, mild conditions, and environmental friendliness. The characteristics and thermal properties of the PEG/PDAMs were investigated using SEM, FTIR, XRD, TGA, DSC, and XPS, and the results demonstrated that the PEG/PDAMs possessed favourable heat storage capacity, excellent thermal stability, and reliability, and the melting and freezing latent heats of PEG/PDAM-3 reached 133.
View Article and Find Full Text PDFA promising new form-stable phase change material (PA/PB) was fabricated using pinecone biochar (PB) as the supporting material of palmitic acid (PA). The biochar of PB with large surface area was produced by forest residue of pinecone, and it was cheap, environment friendly and easy to prepare. The PB was firstly utilized as the supporter of PA and the characterizations of PA/PB were analyzed by the BET, SEM, XRD, DSC, TGA, FT-IR and thermal conductivity tester.
View Article and Find Full Text PDFIn order to remove Pb(II) ions efficiently from aqueous solutions, a new effective adsorbent of norepinephrine-functionalised nanoflower-like organic silica (NE-NFOS) was synthesised by a biomimetic method. Biomimetic functionalization with norepinephrine has the advantages of environment-friendly and easy operation. Characterization of the NE-NFOS using scanning electron microscopy, transmission electron microscopy, Brunauer-Emmett-Teller method, and Fourier-transform infrared spectroscopy revealed that the NFOS was modified successfully by norepinephrine.
View Article and Find Full Text PDFA new form-stable composite phase change material (PEG/ASB) composed of almond shell biochar (ASB) and polyethylene glycol (PEG) was produced via a simple and easy vacuum impregnation method. The supporting material ASB, which was cost effective, environmentally friendly, renewable and rich in appropriate pore structures, was produced from agricultural residues of almond shells by a simple pyrolysis method, and it was firstly used as the matrix of PEG. Different analysis techniques were applied to investigate the characteristics of PEG/ASB, including structural and thermal properties, and the interaction mechanism between ASB and PEG was studied.
View Article and Find Full Text PDFWrinkled mesoporous silica nanoparticle (WMSN), with a special and highly uniform morphology, large specific surface area and pore volume, high porosity and radial-like wrinkled channels, was successfully prepared by a simple and easy synthetic method. WMSN was used as the matrix of myristic acid (MA) to prepare a new attractive shape-stabilized PCM (MA/WMSN), and the wrinkled channels of WMSN are useful to prevent the leakage of PCM, and increase the thermal stability and phase change enthalpy of shape-stabilized PCM. Characterizations of MA/WMSN, such as structure, crystallization properties, chemical properties and thermal properties were studied, and the interaction mechanism between the WMSN and MA molecules was elucidated.
View Article and Find Full Text PDFNanoflower-like wrinkled mesoporous silica (NFMS) was prepared for further application as the carrier of polyethylene glycol (PEG) to fabricate the new, shape-stabilized phase change composites (PEG/NFMS); NFMS could improve the loading content of PEG in the PEG/NFMS. To investigate the properties of PEG/NFMS, characterization approaches, such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), thermal gravimetric analysis (TGA), Brunauer-Emmett-Teller (BET) analysis, and differential scanning calorimetry (DSC), were carried out. The characterization results illustrated that the PEG was completely adsorbed in the NFMS by physical adsorption, and the nanoflower-like wrinkled silica did not affect the crystal structure of PEG.
View Article and Find Full Text PDFTannic acid-templated mesoporous silica (TAMS) was synthesized using a simple nonsurfactant template method and dopamine-functionalized TAMS (Dop-TAMS), which was prepared via a biomimetic coating, was developed as a new support for immobilization of NHase (NHase@Dop-TAMS). The Dop-TAMS was thoroughly characterized by the transmission electron microscopy (TEM), scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET), and Fourier transform infrared (FT-IR) and the results showed that the Dop-TAMS possessed sufficiently large pore size and volume for the accommodation of NHase. Studying the thermal stability, storage, shaking stability, and pH stability of the free and immobilized NHase indicated that the catalytic properties of NHase@Dop-TAMS were significantly enhanced.
View Article and Find Full Text PDFA simple, environmentally friendly and cost-effective nonsurfactant template method was used to synthesize tannic-acid-templated mesoporous silica nanoparticles (TMSNs), and then dopamine functionalized TMSNs (Dop-TMSNs) which was synthesized by a facile and biomimetic coating strategy, was developed as a new sorbent for the removal of Cu from aqueous solution. The Dop-TMSNs were thoroughly characterized by SEM, TEM, BET, FT-IR and TGA, and the effects of contact time, initial pH, K and Na concentrations, co-existing polyvalent metal ions and adsorption-desorption cycle times on the sorption capacity of Dop-TMSNs were studied. It was demonstrated that the maximum adsorption capacity of Cu by Dop-TMSNs was 58.
View Article and Find Full Text PDFDopmine functionalized mesoporous onion-like silica (DPMS) was synthesized via a biomimetic coating, and lipase Candida sp. 99-125 (LCS) was immobilized in DPMS (LCS@DPMS) by physical adsorption in this study. The DPMS was characterized by SEM, TEM, BET and FT-IR, and it was shown that the DPMS had clear multishell structures with large surface area of 419 m/g.
View Article and Find Full Text PDFA novel dopamine-functionalized mesoporous silica (DMS), synthesized by grafting dopamine onto a mesoporous molecular sieve (SBA-15), was developed as a sorbent to extract U(VI) from aqueous solution. The method used to modify SBA-15 was simple, facile and cost-effective. The DMS was characterized by SEM, TEM, XRD and BET, showing that the material had an ordered mesoporous structure and a large surface area.
View Article and Find Full Text PDFViral infection converts the normal constitution of a cell to optimise viral entry, replication, and virion production. These conversions contain alterations or disruptions of the tight and adherens junctions between cells as part of their pathogenesis, and reorganise cellular microfilaments that initiate, sustain and spread the viral infections and so on. Using porcine epidemic diarrhoea virus (PEDV), transmissible gastroenteritis virus (TGEV) and a model of normal intestinal epithelial cells (IPEC-J2), we researched the interaction between tight and adherens junctions and microfilaments of IPEC-J2 cells with these viruses.
View Article and Find Full Text PDFAims: The aim of the study in this article is to explore a safe, convenient and effective oral mucosal vaccine candidate against highly pathogenic avian influenza.
Materials & Methods: We have constructed an oral mucosal vaccine, LL36EH, by use of the genetically stable θ-replicating vector pMG36E, which expressed the fusion protein hemagglutinin 1 (HA(1)) in a live carrier, Lactococcus lactis MG1363. LL36EH was administered orally to mice three times at 2-week intervals.