A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

A promising form-stable phase change material prepared using cost effective pinecone biochar as the matrix of palmitic acid for thermal energy storage. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A promising new form-stable phase change material (PA/PB) was fabricated using pinecone biochar (PB) as the supporting material of palmitic acid (PA). The biochar of PB with large surface area was produced by forest residue of pinecone, and it was cheap, environment friendly and easy to prepare. The PB was firstly utilized as the supporter of PA and the characterizations of PA/PB were analyzed by the BET, SEM, XRD, DSC, TGA, FT-IR and thermal conductivity tester. The results demonstrated that the PA was physically absorbed by the PB and the crystal structure of the PA was not destroyed. The results of DSC showed that the fusing and crystallization points of the form-stable phase change material with the maximum content of PA (PA/PB-4) were 59.25 °C and 59.13 °C, and its fusing and freezing latent heat were 84.74 kJ/kg and 83.81 kJ/kg, respectively. The results of TGA suggested that the thermal stability of the PA/PB-4 composite was excellent, which could be used for the applications of thermal energy storage. Furthermore, the thermal conductivity of PA/PB-4 was 0.3926 W/(m∙K), which was increased by 43.76% compared with that of the pure PA. Thus, the study results indicated that the PA/PB-4 had great potential for thermal energy storage applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6687708PMC
http://dx.doi.org/10.1038/s41598-019-47877-zDOI Listing

Publication Analysis

Top Keywords

form-stable phase
12
phase change
12
change material
12
thermal energy
12
energy storage
12
promising form-stable
8
pinecone biochar
8
palmitic acid
8
thermal conductivity
8
thermal
6

Similar Publications