Lithium metal negative electrodes are highly promising for high-specific-energy batteries due to their low electrochemical potential and high capacity. However, dendrite growth due to limited Li transport at the interface hinder their performance and safety. Enhancing interfacial Li transport can prevent Li depletion and ensure uniform Li deposition.
View Article and Find Full Text PDFVisible Green Space during Running (VGSR) has a significant impact on physical and mental health. However, current studies mostly focus on the green environment of specific static locations (such as residential areas and parks) from a spatial perspective, without fully addressing the issue of equitable access to green resources for dynamic groups with different socioeconomic characteristics. This study utilized running trajectory data to identify runners' trajectories and quantified the visible green environment and green landscape patterns within their running spaces.
View Article and Find Full Text PDFAs a protic impurity, water can severely degrade battery life and pose safety risks. Lowering the HO content in the electrolyte is essential, but it often requires energy-intensive drying technologies. Here, we develop a multifunctional interlayer utilizing dehydrated sepiolite on a commercial polypropylene separator (Sep@PP) to address water-induced challenges in lithium batteries.
View Article and Find Full Text PDFNanoscale
July 2025
The Shidu Formula (SDF) ointment is a natural product-based medicine that has a long history of use in treating psoriasis. Compared to standard first-line clinical medications, SDF remedies present certain advantages, particularly in terms of causing minimal skin irritations. However, several challenges have limited their widespread applications.
View Article and Find Full Text PDFUranyl-organic coordination polymers (UOCPs) have been demonstrated to exhibit photocatalytic activity, but highly stable UOCPs with excellent photocatalytic efficiency are rare. Herein, we present a series of UOCPs built by a semirigid benzimidazole-derived carboxyl ligand. By rationally designing the rigid and flexible sections of the ligand, we have obtained UO(HBDA)(OH)·HO (), UO(HBDA)(HBDA)(NO)·HO (), and UO(HBDA) () with multiple spatial configurations under different conditions ([HBDA]Cl = 1,3-bis(4-carboxybenzyl)-1,3-dihydro-2-benzo[]imidazol-2-iminium chloride).
View Article and Find Full Text PDFMolten salt reactors (MSRs) offer advantages such as enhanced safety, reduced nuclear waste, and cost effectiveness. However, the corrosive nature of fluoride-based molten salts challenges the longevity of structural materials. Ni-based alloys, like Hastelloy N, have shown resistance to fluoride salt corrosion but suffer from issues like helium embrittlement caused by neutron irradiation.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
April 2025
Electrolyte chemistries are crucial for achieving high cycling performance and high energy density in lithium metal batteries. The localized high-concentration electrolytes (LHCEs) exhibit good performance in lithium metal batteries. However, understanding how the intermolecular interactions between solvents and diluents in the electrolyte regulate the solvation structure and interfacial layer structure remains limited.
View Article and Find Full Text PDFThe large-scale loach (Paramisgurnus dabryanus; Cypriniformes: Cobitidae) is primarily distributed in East Asia. It is an important economic fish species characterized by fast growth, temperature-dependent sex determination and the ability to breathe air. Currently, molecular mechanism studies related to some aspects such as sex determination, toxicology, feed nutrition, growth and genetic evolution have been conducted.
View Article and Find Full Text PDFHook.f. & Thomson (CC) is a traditional medicinal herb with multiple biological activities.
View Article and Find Full Text PDFPlant height is a critical agronomic trait that affects crop yield, plant architecture, and environmental adaptability. Gibberellins (GAs) regulate plant height, with DELLA proteins acting as key repressors in the GA signaling pathway by inhibiting GA-induced growth. While DELLA phosphorylation is essential for regulating plant height, the precise mechanisms underlying this process remain incompletely understood.
View Article and Find Full Text PDFPlant Physiol
December 2024
Dwarf or semidwarf plant structures are well suited for intensive farming, maximizing yield, and minimizing labor costs. Watermelon (Citrullus lanatus) is classified as an annual vine plant with elongated internodes, yet the mechanism governing watermelon dwarfing remains unclear. In this study, a compact watermelon mutant dwarf, induced by the insertion of transferred DNA (T-DNA), was discovered.
View Article and Find Full Text PDFIntroduction: In light of the public health burden of the COVID-19 pandemic, boosting the safety and immunogenicity of COVID-19 vaccines is of great concern. Numerous Traditional Chinese medicine (TCM) preparations have shown to beneficially modulate immunity. Based on pilot experiments in mice that showed that supplementation with Huoxiang Suling Shuanghua Decoction (HSSD) significantly enhances serum anti-RBD IgG titers after inoculation with recombinant SARS-CoV-2 S-RBD protein, we conducted this randomized, double-blind, placebo-controlled clinical trial aimed to evaluate the potential immunogenicity boosting effect of oral HSSD after a third homologous immunization with Sinovac's CoronaVac SARS-CoV-2 (CVS) inactivated vaccine.
View Article and Find Full Text PDFCucumber (Cucumis sativus, Cs) tendrils are slender vegetative organs that typically require manual removal to ensure orderly growth during greenhouse cultivation. Here, we identified cucumber tendril-less (tl), a Tnt1 retrotransposon-induced insertion mutant lacking tendrils. Map-based cloning identified the mutated gene, CsaV3_3G003590, which we designated as CsTL, which is homologous to Arabidopsis thaliana LATERAL SUPPRESSOR (AtLAS).
View Article and Find Full Text PDFIntroduction: The lack of safe, effective, and simple short-course regimens (SCRs) for multidrug-resistant/rifampicin-resistant tuberculosis (MDR/RR-TB) treatment has significantly impeded TB control efforts in China.
Methods: This phase 4, randomized, open-label, controlled, non-inferiority trial aims to assess the efficacy and safety of a 9-month all-oral SCR containing bedaquiline (BDQ) versus an all-oral SCR without BDQ for adult MDR-TB patients (18-65 years) in China. The trial design mainly mirrors that of the "Evaluation of a Standardized Treatment Regimen of Anti-Tuberculosis Drugs for Patients with MDR-TB" (STREAM) stage 2 study, while also incorporating programmatic data from South Africa and the 2019 consensus recommendations of Chinese MDR/RR-TB treatment experts.
Inorg Chem
February 2024
Uranyl cation, as an emerging photocatalyst, has been successfully applied to synthetic chemistry in recent years and displayed remarkable catalytic ability under visible light. However, the molecular-level reaction mechanisms of uranyl photocatalysis are unclear. Here, we explore the mechanism of the stepwise benzylic C-H oxygenation of typical alkyl-substituted aromatics (i.
View Article and Find Full Text PDFPhotocatalytic technology has received increasing attention in recent years. A pivotal facet of photocatalytic technology lies in the development of photocatalysts. Porous metal-organic framework (MOF) materials, distinguished by their unique properties and structural characteristics, have emerged as a focal point of research in the field, finding widespread application in the photo-treatment and conversion of various substances.
View Article and Find Full Text PDFThe grass carp (Ctenopharyngodon idella) is the world's most prolific freshwater fish. Little is known, however, about the functional genes and genetic regulatory networks that govern its growth traits. We created three grass carp families in this study by using two grass carp parents with fast-growing offspring and two grass carp parents with slow-growing offspring, namely the fast-growing × fast-growing family (FF), the slow-growing × slow-growing family (SS), and the fast-growing × slow-growing family (FS).
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2023
The investigation of high-performance polymer-based electrolytes holds significant importance for advancing the development of next-generation lithium metal batteries (LMBs). In this work, a quasi-solid-state electrolyte (EFA-G) comprising pyrrolidinium type polymeric ionic liquids and fluoropolymers was synthesized through a photoinitiated free radical copolymerization process in the presence of solvate ionic liquids. EFA-G not only exhibited high ionic conductivity (9.
View Article and Find Full Text PDFCorrosion resistant, durable, and lightweight flexible strain sensor with multiple functionalities is an urgent demand for modern flexible wearable devices. However, currently developed wearable devices are still limited by poor environmental adaptability and functional singleness. In this work, a conductive fabric with multifunctionality in addition to sensing was successfully prepared by assembling zero dimensional silver nanoparticles (AgNPs) and one-dimensional carbon nanotubes (CNTs) layer by layer on the surface of the elastic polypropylene nonwoven fabric (named PACS fabric).
View Article and Find Full Text PDFPlant Physiol
November 2023
The lateral organs of watermelon (Citrullus lanatus), including lobed leaves, branches, flowers, and tendrils, together determine plant architecture and yield. However, the genetic controls underlying lateral organ initiation and morphogenesis remain unclear. Here, we found that knocking out the homologous gene of shoot branching regulator LATERAL SUPPRESSOR in watermelon (ClLs) repressed the initiation of branches, flowers, and tendrils and led to developing round leaves, indicating that ClLs undergoes functional expansion compared with its homologs in Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa), and tomato (Solanum lycopersicum).
View Article and Find Full Text PDFSolid-state ionic conductive elastomers (ICEs) can fundamentally overcome the disadvantages of hydrogels and ionogels (their liquid components tend to leak or evaporate), and are considered to be ideal materials for flexible ionic sensors. In this study, a liquid-free ionic polyurethane (PU) type conductive elastomer (ICE-2) was synthesized and studied. The PU type matrix with microphase separation endowed ICE-2 with excellent mechanical versatility.
View Article and Find Full Text PDFPlant Physiol
August 2023
Light signals promote photomorphogenesis and photosynthesis, allowing plants to establish photoautotrophic growth. Chloroplasts are organelles responsible for photosynthesis in which light energy is converted into chemical energy and stored as organic matter. However, how light regulates chloroplast photomorphogenesis remains unclear.
View Article and Find Full Text PDFClin Pharmacol Drug Dev
February 2023
JNJ-73763989, composed of the 2 short-interfering RNA triggers JNJ-73763976 and JNJ-73763924, targets all hepatitis B virus messenger RNAs, thereby reducing all viral proteins. In this phase 1, single-site, open-label, parallel-group, randomized study, participants were given 1 subcutaneous injection of JNJ-73763989 (100 or 200 mg) to investigate the pharmacokinetics, safety, and tolerability of JNJ-73763989 in healthy Chinese adult participants. Plasma and urine pharmacokinetic parameters were determined for each trigger up to 48 hours after dosing.
View Article and Find Full Text PDFA high-quality baseline transcriptome is a valuable resource for developmental research as well as a useful reference for other studies. We gathered 41 samples representing 11 tissues/organs from 22 important developmental time points within 197 days of fertilization of grass carp eggs in order to systematically examine the role of lncRNAs and alternative splicing in fish development. We created a high-quality grass carp baseline transcriptome with a completeness of up to 93.
View Article and Find Full Text PDFDeveloping high-performance functional polymer-based electrolytes is important for realizing next generation safe lithium metal batteries. In this study, a new type of quasi-solid polymer network electrolyte (SIPH-x-y%) was prepared by combining synthesized polymer network (SIPH) containing urethane bond linked ionic liquids (ILs), polyethylene glycol (PEG), and disulfide bond moieties, lithium bis(trifluoromethanesulfonyl)imide salt (LiTFSI), and glyme type additive. It was found that SIPH-20-40% was mechanically flexible, self-healable, and showed high ionic conductivity of 2.
View Article and Find Full Text PDF