98%
921
2 minutes
20
Corrosion resistant, durable, and lightweight flexible strain sensor with multiple functionalities is an urgent demand for modern flexible wearable devices. However, currently developed wearable devices are still limited by poor environmental adaptability and functional singleness. In this work, a conductive fabric with multifunctionality in addition to sensing was successfully prepared by assembling zero dimensional silver nanoparticles (AgNPs) and one-dimensional carbon nanotubes (CNTs) layer by layer on the surface of the elastic polypropylene nonwoven fabric (named PACS fabric). Polystyrene--poly(ethylene--butylene)--polystyrene (SEBS) added as binder materials favored strong interaction between conductive fillers and the fabric. Benefiting from the synergistic interaction among the conductive fillers with different dimensions and the fabric, the strain sensor based on the conductive fabric showed high sensitivity (GF up to 8064), wide detection range (0-200%), and excellent stability and durability (more than 10000 stretch-release cycles). Besides, the prepared conductive fabric showed superhydrophobicity (water contact angle = 154°) with excellent durability. This ensured the performance stability of the fabric sensor in harsh environments. At the same time, the fabric also showed excellent photothermal conversion performance (90 °C at a power density of 0.2 W/cm within 20 s). The PACS fabric strain sensor proved excellent performance and environmental adaptability, revealing great potential to be applied in human motion monitoring, self-cleaning, biomedicine, and other fields.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.3c01826 | DOI Listing |
ACS Appl Mater Interfaces
September 2025
Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
Strain sensors have received considerable attention in personal healthcare due to their ability to monitor real-time human movement. However, the lack of chemical sensing capabilities in existing strain sensors limits their utility for continuous biometric monitoring. Although the development of dual wearable sensors capable of simultaneously monitoring human motion and biometric data presents significant challenges, the ability to fabricate these sensors with geometries tailored to individual users is highly desirable.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China. Electronic address:
Conductive hydrogels have emerged as promising materials for flexible wearable electronics; however, their facile fabrication remains challenging. This study presents an antifreeze, antibacterial, and conductive hydrogel constructed from biomacromolecules sodium carboxymethylcellulose (CMCNa) and polyvinyl alcohol (PVA). The hydrogel was synthesized via a simple one-pot method in an ethylene glycol/water (EG/H₂O) binary solvent system, incorporating lithium chloride (LiCl) and clove essential oil (CEO), followed by a single freeze-thaw cycle.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 210009, China.
Conductive hydrogels have revolutionized wearable electronics due to their biocompatibility and tunable properties. However, it remains a great challenge for hydrogel-based sensors to maintain both conductivity and mechanical integrity in harsh environments. Synergistic dynamic interactions provide a promising strategy to address this issue.
View Article and Find Full Text PDFCarbohydr Polym
November 2025
Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Joint International Research Lab of Lignocellulosic Functional Materials, College of Materials Science and Engineering, Nanjing Forestry University, N
Hydrogel actuators show tremendous promise for applications in soft robots and artificial muscles. Nevertheless, developing a stretchable hydrogel actuator combining remote actuation and real-time signal feedback remains a challenge. Herein, a light-responsive hydrogel actuator with self-sensing function is fabricated by employing a localized immersion strategy to incorporate polyacrylamide (PAM) hydrogel network into semi-interpenetrating carbon nanotube/2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-oxidized cellulose nanofiber/poly(N-isopropylacrylamide) (CNT/TOCN/PNIPAM) hydrogel.
View Article and Find Full Text PDFACS Sens
September 2025
The State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
Tactile sensing arrays play a crucial role in human-machine interaction, robotics, and artificial intelligence by enabling the perception of physical stimuli on robotic surfaces or human skin. However, skin-attachable sensor arrays still suffer from strain interference and signal crosstalk under stretching or bending, particularly on curved or deformable surfaces. Here, we present a stretchable tactile array that is both strain-insensitive and crosstalk-suppressed, achieved via a hierarchically segmented design that mitigates lateral and vertical deformations synergistically.
View Article and Find Full Text PDF