Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
In order to clarify the nitrogen (N) and phosphorus (P) regeneration patterns and internal mechanism for initiating and maintaining algal blooms in Lake Taihu, samples (including surface water and sediment) from 8 sites in Lake Taihu were collected for nine times from May 2010 to April 2011, and analyzed for total and labile organic matter, P fractionation and sorption behaviors, extracellular enzymatic activities (EEA), dehydrogenase activity, the respiratory electron transport system activity, and iron in sediment, EEA, N and P species and chlorophyll a (Chl. a) in surface water, as well as N and P species in interstitial water. In Lake Taihu, although severe blooms occurred in both Meiliang Bay and Zhushan Bay, the nutrient regeneration patterns stimulating the initiation and maintenance of algae blooms in these two bays were different. In Zhushan Bay with low EEA in surface water, abundant N and P flux from sediments, due to the degradation of organic matter and enzymatic hydrolysis in sediment, further stimulated the initiation and maintenance of algae blooms. In Meiliang Bay, in spite of lower nutrient supply from sediment, high EEA in surface water occurred later than the serious blooms, showing that the nutrient regeneration from sediment, not water body, was still the trigger for the start of the bloom, and sediment nutrient release and predominant surface water nutrient regeneration by abundant exoenzymes sustained the algal blooms. In the Western region, algal bloom started in the northern area and further spread in the remaining part of the lake; nutrient regeneration in the surface water sustained the slight bloom. In the East Bays, the decay and decomposition of macrophytes led to anaerobic conditions in sediments and high ammonia in interstitial water, but low iron bound phosphorus resulted in anaerobic release of very few P, thus showed extremely low Chl. a concentration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2024.143401 | DOI Listing |