Publications by authors named "Chunbin Li"

Bacterial infections significantly alter the local microenvironment, with acidic byproducts from bacterial metabolism leading to a pronounced pH reduction. Leveraging this characteristic, we synthesized and identified DHTPA, a near-infrared (NIR) fluorescent and pH-responsive aggregation-induced emission (AIE) photosensitizer, for enhanced photodynamic therapy against bacterial infections. DHTPA aggregates exhibit a 2.

View Article and Find Full Text PDF
Article Synopsis
  • - Near-infrared II (NIR-II) phototheranostic agents, like organic diradicaloids, show promise for early cancer diagnosis and treatment due to their unique properties.
  • - The study introduced two stable NIR-II luminescent diradicaloids, 2PhNVDPP and PhNVDPP, created through specific molecular strategies that enhance their performance and stability.
  • - The successful application of 2PhNVDPP in nanoparticles demonstrated effective imaging of blood vessels and tumors, aiding in tumor treatment, and highlights a new approach for multimodal cancer therapies.
View Article and Find Full Text PDF

The contradiction of near-infrared II (NIR-II) emission and photothermal effects limits the development of phototheranostic agents (PTAs) in many emerging cutting-edge applications. Organic aggregates present a promising opportunity for the balance of competitive relaxation processes through the manipulation of molecular structure and packing. Herein, side chain phenyl isomerization-induced spatial conjugation was proposed for constructing A-D-A type NIR-II PTAs with simultaneous enhancement of fluorescence brightness and photothermal properties.

View Article and Find Full Text PDF
Article Synopsis
  • Conjugated polymers are emerging as effective near-infrared II (NIR-II) phototheranostic agents due to their benefits like high photostability and excellent photothermal properties.
  • Despite their advantages, these polymers typically have low NIR-II emission quantum yields (QY) due to strong π-π interactions between polymer chains.
  • The study introduces a spacer twisting strategy to create ultrabright NIR-II polymer nanoparticles, specifically PY-IT, which shows a higher QY of 16.5% and demonstrates effective capabilities in NIR-II imaging and tumor photothermal treatment.
View Article and Find Full Text PDF

Fufang Muji granules (FMGs) are a prominent modern prescription Chinese patent formulation derived from the Muji decoction. Utilized in clinical practice for nearly four decades, FMGs have demonstrated efficacy in treating liver diseases. However, the precise mechanism of action remains unclear.

View Article and Find Full Text PDF

We designed two series of NIR-II PTAs with D-A or D-A-D structures, in which the introduction of thiophene promotes a bathochromic shift of emission into the NIR-II region, helps to improve the cellular uptake of the PTAs and facilitates NIR-II imaging-guided PDT/PTT cancer phototherapy.

View Article and Find Full Text PDF

The multiple relaxation processes of excited states are a bridge connecting molecular structures and properties, providing enormous application potential for organic luminogens. However, a systematic understanding and manipulation of the relationship between the molecular structure, excited state relaxation processes, and properties of organic luminogens is still lacking. Herein, we report a strategy for manipulating excited state electronic configurations through the regulation of the sulfur oxidation state to construct eminent organic type I PSs.

View Article and Find Full Text PDF

While second near-infrared (NIR-II) fluorescence imaging is a promising tool for real-time surveillance of surgical operations, the previously reported organic NIR-II luminescent materials for in vivo imaging are predominantly activated by expensive lasers or X-ray with high power and poor illumination homogeneity, which significantly limits their clinical applications. Here we report a white-light activatable NIR-II organic imaging agent by taking advantages of the strong intramolecular/intermolecular D-A interactions of conjugated Y6CT molecules in nanoparticles (Y6CT-NPs), with the brightness of as high as 13315.1, which is over two times that of the brightest laser-activated NIR-II organic contrast agents reported thus far.

View Article and Find Full Text PDF

2D covalent organic framework (COF) materials with extended conjugated structure and periodic columnar π-arrays exhibit promising applications in organic optoelectronics. However, there is a scarcity of reports on optoelectronic COFs, mainly due to the lack of suitable π-skeletons. Here, two multi-functional optoelectronic 2D COFs DPP-TPP-COF and DPP-TBB-COF are constructed with diketopyrrolopyrrole as electron acceptor (A), and 1,3,6,8-tetraphenylpyrene and 1,3,5-triphenylbenzene as electron donor (D) through imine bonds.

View Article and Find Full Text PDF
Article Synopsis
  • * Aggregation-induced emission (AIE) is a promising new concept in luminescence, offering benefits like high brightness, safety for biological use, and stability, making it suitable for medical applications.
  • * This review summarizes the use of AIE luminogens in imaging biological structures, diagnosing diseases, and monitoring specific substances, while also addressing important issues and future research directions to encourage interdisciplinary collaboration.
View Article and Find Full Text PDF

The low oxygen dependence of type I photosensitizers (PSs) has made them a popular choice for treating solid tumors. However, the drawbacks of poor water solubility, short emission wavelength, poor stability, and inability to distinguish cancer cells from normal cells limit the application of most type I PSs in clinical therapy. Thereby, developing novel type I PSs for overcoming these problems is an urgent but challenging task.

View Article and Find Full Text PDF

Type I photosensitizers (PSs) with an aggregation-induced emission (AIE) feature have received sustained attention for their excellent theranostic performance in the treatment of clinical diseases. However, the development of AIE-active type I PSs with strong reactive oxygen species (ROS) production capacity remains a challenge due to the lack of in-depth theoretical studies on the aggregate behavior of PSs and rational design strategies. Herein, we proposed a facile oxidization strategy to enhance the ROS generation efficiency of AIE-active type I PSs.

View Article and Find Full Text PDF

Photosensitizers with aggregation-induced emission (AIE PSs) were widely explored in photodynamic therapy. Numerous acceptors but few donors were reported to design AIE PSs. In this study, we developed a new kind of donor that can improve the comprehensive performance of AIE PSs by expanding the π extension of aromatic rings at the end of the triphenylamine group through acene enlargement.

View Article and Find Full Text PDF

Introduction: Lack of highly expressed tumor target and ligands limits application of nano-medicine against triple-negative breast cancer (TNBC). Previous study reported that placenta-derived oncofetal chondroitin sulfate glycosaminoglycan chain (CSA) expressed on 90% of stage I-III invasive ductal breast carcinomas. Our study found the CSA anchor protein VAR2CSA derived small peptide plCSA had strong binding activity with TNBC cell lines and tumor tissue.

View Article and Find Full Text PDF

Phototheranostics with second near-infrared (NIR-II) imaging and photothermal effect have become a burgeoning biotechnology for tumor diagnosis and precise treatment. As important parameters of phototheranostic agents (PTAs), fluorescence quantum yield (QY) and photothermal conversion efficiency (PCE) are usually considered as a pair of contradictions that is difficult to be simultaneously enhanced. Herein, a fluorination strategy for designing A-D-A type PTAs with synchronously improved QY and PCE is proposed.

View Article and Find Full Text PDF

The performances of second near-infrared (NIR-II) organic phototheranostic agents (OPTAs) depend on both molecular structure and molecular packing when used as nanoparticles (NPs). Herein, we proposed a facile structural isomerization-induced 3D spatial donor (D)-acceptor (A) interlocked network for achieving NIR-II OPTAs. Two isomers, 4MNVDPP and 6MNVDPP were synthesized and formulated into NPs.

View Article and Find Full Text PDF

Pathogenic bacteria infections, especially multidrug resistant bacteria infections have aroused worldwide attention due to their severe threats to human beings. Thus, the development of highly effective antibacterial reagents is very important. However, the design of antimicrobials is still quite challenging for the lack of a universal design strategy.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is associated with a high mortality rate worldwide. The therapeutic outcomes can be significantly improved if diagnosis and treatment are initiated earlier in the disease process. Recently, the carboxylesterase (CaE) activity/level in human plasma was reported to be a novel serological biomarker candidate for HCC.

View Article and Find Full Text PDF

Butyrylcholinesterase (BChE) is an essential human biomarker which is related to liver and neurodegenerative diseases. It is of great significance to develop a fluorescent probe that can image BChE and . Unfortunately, most fluorescent probes that are based on a single change in fluorescence intensity are susceptible to environmental interference.

View Article and Find Full Text PDF

As a typical and broad-spectrum benzimidazole, mebendazole (MBZ) has long been used in human and veterinary medicine to treat parasitic infestations, and is widely employed in the aquaculture of Japanese pufferfish (). However, there have been no studies examining the pharmacokinetic characteristics of MBZ in Japanese pufferfish. Furthermore, the presence of MBZ and its metabolites in animal-derived raw food represents a notable safety concern.

View Article and Find Full Text PDF

Tumor hypoxia seriously impairs the therapeutic outcomes of type II photodynamic therapy (PDT), which is highly dependent upon tissue oxygen concentration. Herein, a facile strategy of acceptor planarization and donor rotation is proposed to design type I photosensitizers (PSs) and photothermal reagents. Acceptor planarization can not only enforce intramolecular charge transfer to redshift NIR absorption but also transfer the type of PSs from type II to type I photochemical pathways.

View Article and Find Full Text PDF

Currently, bright aggregation-induced emission luminogens (AIEgens) with high photoluminescence quantum yields (PLQYs) in the NIR-II region are still limited, and thus an efficient strategy to enhance NIR-II fluorescence performance through tuning molecular aggregation is proposed here. The synthesized donor-acceptor tailored AIEgen (DTPA-TBZ) not only exhibits an excellent absorptivity in the NIR-I region, but also good fluorescence signals in the NIR-II region with an emission extending to 1200 nm. Benefiting from such improved intramolecular restriction and aggregation, a significant absolute PLQY value of 8.

View Article and Find Full Text PDF

The endoplasmic reticulum (ER) is a very important organelle responsible for crucial biosynthetic, sensing, and signalling functions in eukaryotic cells. In this work, we established a strategy of ligand regulation to enhance the singlet oxygen generation capacity and subcellular organelle localization ability of a rhodamine-decorated iridium(iii) complex by variation of the cyclometallating ligand. The resulting metal complex showed outstanding reactive oxygen species generation efficiency (1.

View Article and Find Full Text PDF

Two novel nortriterpenoids together with 7 known compounds were isolated from the fruits of Evodia rutaecarpa. The structures of the new compounds were elucidated by spectroscopic analysis, X-ray, and electronic circular dichroism (ECD) calculations. Compound 1 is the first example of triterpenoid with a 27 (17 → 12)-abeo-five-ring skeleton.

View Article and Find Full Text PDF

Iatrogenic ureteral injury is a dreaded complication of abdominal and pelvic surgeries, and thus, intraoperative identification of ureters is of paramount importance but lacks efficient methods and probes. Herein, we used near-infrared II (NIR-II, 1000-1700 nm) fluorescence imaging with advantages of higher spatial resolution, deeper tissue penetration, lower light scattering, and less tissue autofluorescence to identify ureters by aggregation-induced emission luminogen dots (AIE dots). The intraoperative ureteral injuries and common ureteral diseases can be visualized timely and precisely.

View Article and Find Full Text PDF